These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28005360)

  • 1. Relativistic Prolapse-Free Gaussian Basis Sets of Quadruple-ζ Quality: (aug-)RPF-4Z. III. The f-Block Elements.
    Teodoro TQ; Visscher L; da Silva AB; Haiduke RL
    J Chem Theory Comput; 2017 Mar; 13(3):1094-1101. PubMed ID: 28005360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. I. The s- and p-Block Elements.
    Teodoro TQ; da Silva AB; Haiduke RL
    J Chem Theory Comput; 2014 Sep; 10(9):3800-6. PubMed ID: 26588525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. II. The d-Block Elements.
    Teodoro TQ; Ferreira da Silva AB; Haiduke RL
    J Chem Theory Comput; 2014 Nov; 10(11):4761-4. PubMed ID: 26584362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements.
    Dyall KG
    J Phys Chem A; 2009 Nov; 113(45):12638-44. PubMed ID: 19670829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate relativistic adapted Gaussian basis sets for francium through Ununoctium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.
    Teodoro TQ; Haiduke RL
    J Comput Chem; 2013 Oct; 34(27):2372-9. PubMed ID: 23913741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate relativistic adapted Gaussian basis sets for Cesium through Radon without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.
    Haiduke RL; Da Silva AB
    J Comput Chem; 2006 Dec; 27(16):1970-9. PubMed ID: 17031899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.
    Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P
    J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmented Contracted Error-Consistent Basis Sets of Quadruple-ζ Valence Quality for One- and Two-Component Relativistic All-Electron Calculations.
    Franzke YJ; Spiske L; Pollak P; Weigend F
    J Chem Theory Comput; 2020 Sep; 16(9):5658-5674. PubMed ID: 32786897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds.
    Xu X; Truhlar DG
    J Chem Theory Comput; 2011 Sep; 7(9):2766-79. PubMed ID: 26605468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for hydrogen through xenon.
    Gusmão EF; Haiduke RLA
    J Comput Chem; 2022 Oct; 43(28):1901-1910. PubMed ID: 36056621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic energy-consistent pseudopotentials for superheavy elements 119 and 120 including quantum electrodynamic effects.
    Hangele T; Dolg M; Schwerdtfeger P
    J Chem Phys; 2013 May; 138(17):174113. PubMed ID: 23656120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Property-optimized Gaussian basis sets for lanthanides.
    Rappoport D
    J Chem Phys; 2021 Sep; 155(12):124102. PubMed ID: 34598572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmented Contracted Error-Consistent Basis Sets of Double- and Triple-ζ Valence Quality for One- and Two-Component Relativistic All-Electron Calculations.
    Pollak P; Weigend F
    J Chem Theory Comput; 2017 Aug; 13(8):3696-3705. PubMed ID: 28679044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Error-Balanced Segmented Contracted Basis Sets of Double-ζ to Quadruple-ζ Valence Quality for the Lanthanides.
    Gulde R; Pollak P; Weigend F
    J Chem Theory Comput; 2012 Nov; 8(11):4062-8. PubMed ID: 26605573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations.
    Laun J; Vilela Oliveira D; Bredow T
    J Comput Chem; 2018 Jul; 39(19):1285-1290. PubMed ID: 29468714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the sixth period for solid-state calculations.
    Laun J; Bredow T
    J Comput Chem; 2021 Jun; 42(15):1064-1072. PubMed ID: 33792062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-electron Gaussian basis sets of double zeta quality for the actinides.
    Martins LS; Jorge FE; Franco ML; Ferreira IB
    J Chem Phys; 2016 Dec; 145(24):244113. PubMed ID: 28049304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic correlating basis sets for the sixth-period d-block atoms from Lu to Hg.
    Osanai Y; Noro T; Miyoshi E; Sekiya M; Koga T
    J Chem Phys; 2004 Apr; 120(14):6408-13. PubMed ID: 15267529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations.
    Peintinger MF; Oliveira DV; Bredow T
    J Comput Chem; 2013 Mar; 34(6):451-9. PubMed ID: 23115105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.