These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 28005374)
1. Intercalation Doped Multilayer-Graphene-Nanoribbons for Next-Generation Interconnects. Jiang J; Kang J; Cao W; Xie X; Zhang H; Chu JH; Liu W; Banerjee K Nano Lett; 2017 Mar; 17(3):1482-1488. PubMed ID: 28005374 [TBL] [Abstract][Full Text] [Related]
2. Performance and reliability improvement in intercalated MLGNR interconnects using optimized aspect ratio. Kumari B; Sharma R; Sahoo M Sci Rep; 2022 Jan; 12(1):1475. PubMed ID: 35087115 [TBL] [Abstract][Full Text] [Related]
3. Electronic Decoupling and Hole-Doping of Graphene Nanoribbons on Metal Substrates by Chloride Intercalation. Kinikar A; Englmann TG; Di Giovannantonio M; Bassi N; Xiang F; Stolz S; Widmer R; Borin Barin G; Turco E; Eimre K; Merino Díez N; Ortega-Guerrero A; Feng X; Gröning O; Pignedoli CA; Fasel R; Ruffieux P ACS Nano; 2024 Jul; 18(26):16622-16631. PubMed ID: 38904174 [TBL] [Abstract][Full Text] [Related]
4. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis. Zhou X; Yu G Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353 [TBL] [Abstract][Full Text] [Related]
5. Tip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications. Hu H; Banerjee S; Estrada D; Bashir R; King WP RSC Adv; 2015 Jan; 5(46):37006-37012. PubMed ID: 26257891 [TBL] [Abstract][Full Text] [Related]
6. Development of Highly Sensitive Strain Sensor Using Area-Arrayed Graphene Nanoribbons. Suzuki K; Nakagawa R; Zhang Q; Miura H Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34203546 [TBL] [Abstract][Full Text] [Related]
7. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures. He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227 [TBL] [Abstract][Full Text] [Related]
8. Effect of ribbon width on electrical transport properties of graphene nanoribbons. Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH Nano Converg; 2018; 5(1):7. PubMed ID: 29577013 [TBL] [Abstract][Full Text] [Related]
9. Temperature and Size Effect on the Electrical Properties of Monolayer Graphene based Interconnects for Next Generation MQCA based Nanoelectronics. Debroy S; Sivasubramani S; Vaidya G; Acharyya SG; Acharyya A Sci Rep; 2020 Apr; 10(1):6240. PubMed ID: 32277138 [TBL] [Abstract][Full Text] [Related]
10. Correlating atomic structure and transport in suspended graphene nanoribbons. Qi ZJ; Rodríguez-Manzo JA; Botello-Méndez AR; Hong SJ; Stach EA; Park YW; Charlier JC; Drndić M; Johnson AT Nano Lett; 2014 Aug; 14(8):4238-44. PubMed ID: 24954396 [TBL] [Abstract][Full Text] [Related]
11. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172 [TBL] [Abstract][Full Text] [Related]
12. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078 [TBL] [Abstract][Full Text] [Related]
13. Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition. Behnam A; Lyons AS; Bae MH; Chow EK; Islam S; Neumann CM; Pop E Nano Lett; 2012 Sep; 12(9):4424-30. PubMed ID: 22853618 [TBL] [Abstract][Full Text] [Related]
14. Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries. Medina PA; Zheng H; Fahlman BD; Annamalai P; Swartbooi A; le Roux L; Mathe MK Springerplus; 2015; 4():643. PubMed ID: 26543777 [TBL] [Abstract][Full Text] [Related]
15. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Chen L; He L; Wang HS; Wang H; Tang S; Cong C; Xie H; Li L; Xia H; Li T; Wu T; Zhang D; Deng L; Yu T; Xie X; Jiang M Nat Commun; 2017 Mar; 8():14703. PubMed ID: 28276532 [TBL] [Abstract][Full Text] [Related]
16. Tunable doping of graphene nanoribbon arrays by chemical functionalization. Solís-Fernández P; Bissett MA; Tsuji M; Ago H Nanoscale; 2015 Feb; 7(8):3572-80. PubMed ID: 25630426 [TBL] [Abstract][Full Text] [Related]
17. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts. Poljak M; Matić M Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209314 [TBL] [Abstract][Full Text] [Related]
18. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Sakaguchi H; Kawagoe Y; Hirano Y; Iruka T; Yano M; Nakae T Adv Mater; 2014 Jun; 26(24):4134-8. PubMed ID: 24711068 [TBL] [Abstract][Full Text] [Related]
19. Raman spectroscopy of lithographically patterned graphene nanoribbons. Ryu S; Maultzsch J; Han MY; Kim P; Brus LE ACS Nano; 2011 May; 5(5):4123-30. PubMed ID: 21452879 [TBL] [Abstract][Full Text] [Related]
20. 2D self-assembly and electronic characterization of oxygen-boron-oxygen-doped chiral graphene nanoribbons. Jin L; Bilbao N; Lv Y; Wang XY; Soltani P; Mali KS; Narita A; De Feyter S; Müllen K; Chen Z Chem Commun (Camb); 2021 Jun; 57(49):6031-6034. PubMed ID: 34032226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]