These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices. Chen Z; Narita A; Müllen K Adv Mater; 2020 Nov; 32(45):e2001893. PubMed ID: 32945038 [TBL] [Abstract][Full Text] [Related]
28. Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction. Liu M; Song Y; He S; Tjiu WW; Pan J; Xia YY; Liu T ACS Appl Mater Interfaces; 2014 Mar; 6(6):4214-22. PubMed ID: 24559423 [TBL] [Abstract][Full Text] [Related]
29. Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability. Huang Y; Mai Y; Beser U; Teyssandier J; Velpula G; van Gorp H; Straasø LA; Hansen MR; Rizzo D; Casiraghi C; Yang R; Zhang G; Wu D; Zhang F; Yan D; De Feyter S; Müllen K; Feng X J Am Chem Soc; 2016 Aug; 138(32):10136-9. PubMed ID: 27463961 [TBL] [Abstract][Full Text] [Related]
30. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. Chen Z; Zhang W; Palma CA; Lodi Rizzini A; Liu B; Abbas A; Richter N; Martini L; Wang XY; Cavani N; Lu H; Mishra N; Coletti C; Berger R; Klappenberger F; Kläui M; Candini A; Affronte M; Zhou C; De Renzi V; Del Pennino U; Barth JV; Räder HJ; Narita A; Feng X; Müllen K J Am Chem Soc; 2016 Nov; 138(47):15488-15496. PubMed ID: 27933922 [TBL] [Abstract][Full Text] [Related]
31. Effect of Dimensionality and Doping in Quasi-"One-Dimensional (1-D)" Nitrogen-Doped Graphene Nanoribbons on the Oxygen Reduction Reaction. Kundu S; Malik B; Pattanayak DK; Pillai VK ACS Appl Mater Interfaces; 2017 Nov; 9(44):38409-38418. PubMed ID: 29028352 [TBL] [Abstract][Full Text] [Related]
32. Synthesis of polybenzoquinolines as precursors for nitrogen-doped graphene nanoribbons. Dibble DJ; Park YS; Mazaheripour A; Umerani MJ; Ziller JW; Gorodetsky AA Angew Chem Int Ed Engl; 2015 May; 54(20):5883-7. PubMed ID: 25823492 [TBL] [Abstract][Full Text] [Related]
34. Helical and Dendritic Unzipping of Carbon Nanotubes: A Route to Nitrogen-Doped Graphene Nanoribbons. Zehtab Yazdi A; Chizari K; Jalilov AS; Tour J; Sundararaj U ACS Nano; 2015 Jun; 9(6):5833-45. PubMed ID: 26028162 [TBL] [Abstract][Full Text] [Related]
35. Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials. Vo TH; Perera UG; Shekhirev M; Mehdi Pour M; Kunkel DA; Lu H; Gruverman A; Sutter E; Cotlet M; Nykypanchuk D; Zahl P; Enders A; Sinitskii A; Sutter P Nano Lett; 2015 Sep; 15(9):5770-7. PubMed ID: 26258628 [TBL] [Abstract][Full Text] [Related]
36. Relationship Between Stress Modulated Metallicity and Plasmon in Graphene Nanoribbons. Zhang N; Yang Z; Zhang Z; Wang J Chemphyschem; 2023 Dec; 24(24):e202300348. PubMed ID: 37731169 [TBL] [Abstract][Full Text] [Related]
37. Cai L; He W; Xue X; Huang J; Zhou K; Zhou X; Xu Z; Yu G Natl Sci Rev; 2021 Dec; 8(12):nwaa298. PubMed ID: 34987835 [TBL] [Abstract][Full Text] [Related]
38. First-Principles Study of the Role of O2 and H2O in the Decoupling of Graphene on Cu(111). Wong K; Kang SJ; Bielawski CW; Ruoff RS; Kwak SK J Am Chem Soc; 2016 Aug; 138(34):10986-94. PubMed ID: 27490135 [TBL] [Abstract][Full Text] [Related]
39. Graphene Nanoribbon Grids of Sub-10 nm Widths with High Electrical Connectivity. Kim N; Choi S; Yang SJ; Park J; Park JH; Nguyen NN; Park K; Ryu S; Cho K; Kim CJ ACS Appl Mater Interfaces; 2021 Jun; 13(24):28593-28599. PubMed ID: 34101416 [TBL] [Abstract][Full Text] [Related]
40. Lateral Fusion of Chemical Vapor Deposited N = 5 Armchair Graphene Nanoribbons. Chen Z; Wang HI; Bilbao N; Teyssandier J; Prechtl T; Cavani N; Tries A; Biagi R; De Renzi V; Feng X; Kläui M; De Feyter S; Bonn M; Narita A; Müllen K J Am Chem Soc; 2017 Jul; 139(28):9483-9486. PubMed ID: 28650622 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]