BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 28005411)

  • 21. Serum FGF23 levels in normal and disordered phosphorus homeostasis.
    Weber TJ; Liu S; Indridason OS; Quarles LD
    J Bone Miner Res; 2003 Jul; 18(7):1227-34. PubMed ID: 12854832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mineralizing enthesopathy is a common feature of renal phosphate-wasting disorders attributed to FGF23 and is exacerbated by standard therapy in hyp mice.
    Karaplis AC; Bai X; Falet JP; Macica CM
    Endocrinology; 2012 Dec; 153(12):5906-17. PubMed ID: 23038738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathogenic role of Fgf23 in Hyp mice.
    Liu S; Zhou J; Tang W; Jiang X; Rowe DW; Quarles LD
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E38-49. PubMed ID: 16449303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel regulators of phosphate homeostasis and bone metabolism.
    Jüppner H
    Ther Apher Dial; 2007 Oct; 11 Suppl 1():S3-22. PubMed ID: 17976082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel nonsense mutation in the DMP1 gene in a Japanese family with autosomal recessive hypophosphatemic rickets.
    Koshida R; Yamaguchi H; Yamasaki K; Tsuchimochi W; Yonekawa T; Nakazato M
    J Bone Miner Metab; 2010 Sep; 28(5):585-90. PubMed ID: 20213538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutational analysis of patients with FGF23-related hypophosphatemic rickets.
    Kinoshita Y; Saito T; Shimizu Y; Hori M; Taguchi M; Igarashi T; Fukumoto S; Fujita T
    Eur J Endocrinol; 2012 Aug; 167(2):165-72. PubMed ID: 22577109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia.
    Clinkenbeard EL; Cass TA; Ni P; Hum JM; Bellido T; Allen MR; White KE
    J Bone Miner Res; 2016 Jun; 31(6):1247-57. PubMed ID: 26792657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism.
    Feng JQ; Ward LM; Liu S; Lu Y; Xie Y; Yuan B; Yu X; Rauch F; Davis SI; Zhang S; Rios H; Drezner MK; Quarles LD; Bonewald LF; White KE
    Nat Genet; 2006 Nov; 38(11):1310-5. PubMed ID: 17033621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis.
    Qin C; D'Souza R; Feng JQ
    J Dent Res; 2007 Dec; 86(12):1134-41. PubMed ID: 18037646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis.
    Lorenz-Depiereux B; Bastepe M; Benet-Pagès A; Amyere M; Wagenstaller J; Müller-Barth U; Badenhoop K; Kaiser SM; Rittmaster RS; Shlossberg AH; Olivares JL; Loris C; Ramos FJ; Glorieux F; Vikkula M; Jüppner H; Strom TM
    Nat Genet; 2006 Nov; 38(11):1248-50. PubMed ID: 17033625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets.
    Wöhrle S; Henninger C; Bonny O; Thuery A; Beluch N; Hynes NE; Guagnano V; Sellers WR; Hofmann F; Kneissel M; Graus Porta D
    J Bone Miner Res; 2013 Apr; 28(4):899-911. PubMed ID: 23129509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional analysis of mutant FAM20C in Raine syndrome with FGF23-related hypophosphatemia.
    Kinoshita Y; Hori M; Taguchi M; Fukumoto S
    Bone; 2014 Oct; 67():145-51. PubMed ID: 25026495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SPR4-peptide alters bone metabolism of normal and HYP mice.
    Zelenchuk LV; Hedge AM; Rowe PS
    Bone; 2015 Mar; 72():23-33. PubMed ID: 25460577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk.
    Pastor-Arroyo EM; Gehring N; Krudewig C; Costantino S; Bettoni C; Knöpfel T; Sabrautzki S; Lorenz-Depiereux B; Pastor J; Strom TM; Hrabě de Angelis M; Camici GG; Paneni F; Wagner CA; Rubio-Aliaga I
    Kidney Int; 2018 Jul; 94(1):49-59. PubMed ID: 29735309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression.
    Ichikawa S; Sorenson AH; Austin AM; Mackenzie DS; Fritz TA; Moh A; Hui SL; Econs MJ
    Endocrinology; 2009 Jun; 150(6):2543-50. PubMed ID: 19213845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis.
    Ichikawa S; Austin AM; Gray AK; Allen MR; Econs MJ
    Endocrinology; 2011 Dec; 152(12):4504-13. PubMed ID: 22009723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FGF23 and syndromes of abnormal renal phosphate handling.
    Bergwitz C; Jüppner H
    Adv Exp Med Biol; 2012; 728():41-64. PubMed ID: 22396161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.
    Wolf M; White KE
    Curr Opin Nephrol Hypertens; 2014 Jul; 23(4):411-9. PubMed ID: 24867675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization.
    Quarles LD
    Am J Physiol Endocrinol Metab; 2003 Jul; 285(1):E1-9. PubMed ID: 12791601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FGF23-induced hypophosphatemia persists in Hyp mice deficient in the WNT coreceptor Lrp6.
    Uchihashi K; Nakatani T; Goetz R; Mohammadi M; He X; Razzaque MS
    Contrib Nephrol; 2013; 180():124-37. PubMed ID: 23652555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.