These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28005451)

  • 1. Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy?
    Sousa F; Castro P; Fonte P; Kennedy PJ; Neves-Petersen MT; Sarmento B
    Expert Opin Drug Deliv; 2017 Oct; 14(10):1163-1176. PubMed ID: 28005451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyester-Based Nanoparticles for the Encapsulation of Monoclonal Antibodies.
    Sousa F; Fonte P; Cruz A; Kennedy PJ; Pinto IM; Sarmento B
    Methods Mol Biol; 2018; 1674():239-253. PubMed ID: 28921443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibodies and associates: Partners in targeted drug delivery.
    Kennedy PJ; Oliveira C; Granja PL; Sarmento B
    Pharmacol Ther; 2017 Sep; 177():129-145. PubMed ID: 28315359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles as delivery carriers for anticancer prodrugs.
    Fang JY; Al-Suwayeh SA
    Expert Opin Drug Deliv; 2012 Jun; 9(6):657-69. PubMed ID: 22507134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery.
    Yang E; Qian W; Cao Z; Wang L; Bozeman EN; Ward C; Yang B; Selvaraj P; Lipowska M; Wang YA; Mao H; Yang L
    Theranostics; 2015; 5(1):43-61. PubMed ID: 25553097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploitation of lipid-polymeric matrices at nanoscale for drug delivery applications.
    Sgorla D; Bunhak ÉJ; Cavalcanti OA; Fonte P; Sarmento B
    Expert Opin Drug Deliv; 2016 Sep; 13(9):1301-9. PubMed ID: 27110648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug delivery to the eye: what benefits do nanocarriers offer?
    Joseph RR; Venkatraman SS
    Nanomedicine (Lond); 2017 Mar; 12(6):683-702. PubMed ID: 28186436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications.
    Jones RG; Martino A
    Crit Rev Biotechnol; 2016; 36(3):506-20. PubMed ID: 25600465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances on biocompatible and biodegradable nanoparticles as gene carriers.
    Mokhtarzadeh A; Alibakhshi A; Yaghoobi H; Hashemi M; Hejazi M; Ramezani M
    Expert Opin Biol Ther; 2016 Jun; 16(6):771-85. PubMed ID: 26998622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders.
    Mittal R; Patel AP; Jhaveri VM; Kay SS; Debs LH; Parrish JM; Pan DR; Nguyen D; Mittal J; Jayant RD
    Expert Opin Drug Deliv; 2018 Mar; 15(3):301-318. PubMed ID: 29272976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation.
    Yadav SC; Kumari A; Yadav R
    Peptides; 2011 Jan; 32(1):173-87. PubMed ID: 20934475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The achievement of ligand-functionalized organic/polymeric nanoparticles for treating multidrug resistant cancer.
    Lee WH; Loo CY; Leong CR; Young PM; Traini D; Rohanizadeh R
    Expert Opin Drug Deliv; 2017 Aug; 14(8):937-957. PubMed ID: 27759437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable Drug-Loaded Nanocarriers for Lung Cancer Treatments.
    Yu HP; Aljuffali IA; Fang JY
    Curr Pharm Des; 2017; 23(3):481-494. PubMed ID: 28292243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells.
    Cruz LJ; Tacken PJ; Fokkink R; Figdor CG
    Biomaterials; 2011 Oct; 32(28):6791-803. PubMed ID: 21724247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosensitive nanocarriers for specific delivery of cargo into cells.
    Mena-Giraldo P; Pérez-Buitrago S; Londoño-Berrío M; Ortiz-Trujillo IC; Hoyos-Palacio LM; Orozco J
    Sci Rep; 2020 Feb; 10(1):2110. PubMed ID: 32034197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic ion pairing as a strategy to improve drug encapsulation into lipid nanocarriers for the cancer treatment.
    Oliveira MS; Goulart GCA; Ferreira LAM; Carneiro G
    Expert Opin Drug Deliv; 2017 Aug; 14(8):983-995. PubMed ID: 27892713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities.
    Zhang J; Li J; Shi Z; Yang Y; Xie X; Lee SM; Wang Y; Leong KW; Chen M
    Acta Biomater; 2017 Aug; 58():349-364. PubMed ID: 28455219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: a promising strategy for CNS targeting delivery of peptides.
    Qian S; Wang Q; Zuo Z
    Expert Opin Drug Metab Toxicol; 2014 Nov; 10(11):1491-508. PubMed ID: 25196358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges in SN38 drug delivery: current success and future directions.
    Palakurthi S
    Expert Opin Drug Deliv; 2015; 12(12):1911-21. PubMed ID: 26206312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.