These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28005841)

  • 1. Common-path heterodyne self-mixing interferometry with polarization and frequency multiplexing.
    Zhang S; Zhang S; Tan Y; Sun L
    Opt Lett; 2016 Oct; 41(20):4827-4830. PubMed ID: 28005841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-mixing interferometry with mutual independent orthogonal polarized light.
    Zhang S; Zhang S; Tan Y; Sun L
    Opt Lett; 2016 Feb; 41(4):844-6. PubMed ID: 26872203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing.
    Wan X; Li D; Zhang S
    Opt Lett; 2007 Feb; 32(4):367-9. PubMed ID: 17356655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microchip laser source with stable intensity and frequency used for self-mixing interferometry.
    Zhang S; Zhang S; Tan Y; Sun L
    Rev Sci Instrum; 2016 May; 87(5):053114. PubMed ID: 27250399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel multiplex laser feedback interferometry.
    Zhang S; Tan Y; Zhang S
    Rev Sci Instrum; 2013 Dec; 84(12):123101. PubMed ID: 24387414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a full-dynamic-range balanced detection heterodyne gyroscope with common-path configuration.
    Lin CE; Yu CJ; Chen CC
    Opt Express; 2013 Apr; 21(8):9947-58. PubMed ID: 23609700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full path compensation laser feedback interferometry for remote sensing with recovered nanometer resolutions.
    Xu L; Tan Y; Zhang S
    Rev Sci Instrum; 2018 Mar; 89(3):033108. PubMed ID: 29604756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber self-mixing interferometer with orthogonally polarized light compensation.
    Zhang S; Zhang S; Sun L; Tan Y
    Opt Express; 2016 Nov; 24(23):26558-26564. PubMed ID: 27857388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.
    Canagasabey A; Michie A; Canning J; Holdsworth J; Fleming S; Wang HC; Aslund ML
    Sensors (Basel); 2011; 11(10):9233-41. PubMed ID: 22163692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry.
    Zheng F; Tan Y; Lin J; Ding Y; Zhang S
    Rev Sci Instrum; 2015 Apr; 86(4):043109. PubMed ID: 25933843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental comparison of autodyne and heterodyne laser interferometry using an Nd:YVO₄ microchip laser.
    Jacquin O; Lacot E; Glastre W; Hugon O; Guillet de Chatellus H
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1741-6. PubMed ID: 21811337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of frequency-mixing effect for pm-level heterodyne interferometers based on "zero coupling" optical path length control.
    Cao B; Jia FL; Yang ML; Liao FJ; Wu KH; Huang XQ; Ming M; Zhang JY; Wen SZ; Duan HZ; Yeh HC
    Opt Lett; 2024 Jun; 49(12):3300-3303. PubMed ID: 38875605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency structure in an electronically tuned Ti:sapphire laser: periodic appearance of static fringes in both homodyne and heterodyne Michelson interferometers.
    Geng J; Wada S; Saito N; Tashiro H
    Opt Lett; 1999 Nov; 24(22):1635-7. PubMed ID: 18079888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser heterodyne interferometric signal processing method based on rising edge locking with high frequency clock signal.
    Zhang E; Chen B; Yan L; Yang T; Hao Q; Dong W; Li C
    Opt Express; 2013 Feb; 21(4):4638-52. PubMed ID: 23481996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous measurement of refractive-index and thickness for optical materials by laser feedback interferometry.
    Xu L; Zhang S; Tan Y; Sun L
    Rev Sci Instrum; 2014 Aug; 85(8):083111. PubMed ID: 25173250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity.
    Tan Y; Zhang S; Zhang Y
    Opt Express; 2009 Aug; 17(16):13939-45. PubMed ID: 19654801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error Analysis of Heterodyne Interferometry Based on One Single-Mode Polarization-Maintaining Fiber.
    Qian Y; Li J; Feng Q; He Q; Long F
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement.
    Tao Y; Xia W; Wang M; Guo D; Hao H
    Opt Express; 2017 Feb; 25(3):2285-2298. PubMed ID: 29519076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1-microm microchip Ho,Tm:YAG laser.
    He C; Killinger DK
    Opt Lett; 1994 Mar; 19(6):396-8. PubMed ID: 19829653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental observation of differential self-mixing interference signals using a randomly polarized laser: a differential self-mixing interferometry.
    Qi P; Cheng J; Li S; Zhang Z; Song G; Weng J; Zhong J
    Opt Lett; 2020 Apr; 45(7):1858-1861. PubMed ID: 32236017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.