These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28006666)

  • 1. Key environmental processes affecting the fate of the insecticide chloropyrifos applied to leaves.
    Lester Y; Sabach S; Zivan O; Dubowski Y
    Chemosphere; 2017 Mar; 171():74-80. PubMed ID: 28006666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the atmospheric degradation of chlorpyrifos-methyl.
    Muñoz A; Vera T; Sidebottom H; Mellouki A; Borrás E; Ródenas M; Clemente E; Vázquez M
    Environ Sci Technol; 2011 Mar; 45(5):1880-6. PubMed ID: 21288020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gas-phase degradation of chlorpyrifos and chlorpyrifos-oxon towards OH radical under atmospheric conditions.
    Muñoz A; Ródenas M; Borrás E; Vázquez M; Vera T
    Chemosphere; 2014 Sep; 111():522-8. PubMed ID: 24997961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric fate of a series of carbonyl nitrates: photolysis frequencies and OH-oxidation rate constants.
    Suarez-Bertoa R; Picquet-Varrault B; Tamas W; Pangui E; Doussin JF
    Environ Sci Technol; 2012 Nov; 46(22):12502-9. PubMed ID: 23126588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the photodegradation of a fragrance ingredient for aquatic environmental fate assessment.
    Lin J; Emberger M
    Chemosphere; 2017 Apr; 173():485-493. PubMed ID: 28131918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric fate of dichlorvos: photolysis and OH-initiated oxidation studies.
    Feigenbrugel V; Le Person A; Le Calvé S; Mellouki A; Muñoz A; Wirtz K
    Environ Sci Technol; 2006 Feb; 40(3):850-7. PubMed ID: 16509328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.
    Keen OS; Ferrer I; Michael Thurman E; Linden KG
    Chemosphere; 2014 Dec; 117():316-23. PubMed ID: 25150682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combustion Processes as a Source of High Levels of Indoor Hydroxyl Radicals through the Photolysis of Nitrous Acid.
    Bartolomei V; Gomez Alvarez E; Wittmer J; Tlili S; Strekowski R; Temime-Roussel B; Quivet E; Wortham H; Zetzsch C; Kleffmann J; Gligorovski S
    Environ Sci Technol; 2015 Jun; 49(11):6599-607. PubMed ID: 25942056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic study of the daytime atmospheric fate of (Z)-3-hexenal.
    Xing JH; Ono M; Kuroda A; Obi K; Sato K; Imamura T
    J Phys Chem A; 2012 Aug; 116(33):8523-9. PubMed ID: 22799591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine.
    Latch DE; Stender BL; Packer JL; Arnold WA; McNeill K
    Environ Sci Technol; 2003 Aug; 37(15):3342-50. PubMed ID: 12966980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-phase degradation of the herbicide ethalfluralin under atmospheric conditions.
    Muñoz A; Vera T; Ródenas M; Borrás E; Mellouki A; Treacy J; Sidebottom H
    Chemosphere; 2014 Jan; 95():395-401. PubMed ID: 24139158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions.
    Xu H; Cooper WJ; Jung J; Song W
    Water Res; 2011 Jan; 45(2):632-8. PubMed ID: 20813393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodegradation kinetics of p-tert-octylphenol, 4-tert-octylphenoxy-acetic acid and ibuprofen under simulated solar conditions in surface water.
    Xu Y; Nguyen TV; Reinhard M; Gin KY
    Chemosphere; 2011 Oct; 85(5):790-6. PubMed ID: 21745677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phototransformation processes of 2,4-dinitrophenol, relevant to atmospheric water droplets.
    Albinet A; Minero C; Vione D
    Chemosphere; 2010 Aug; 80(7):753-8. PubMed ID: 20538316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging investigator series: sunlight photolysis of 2,4-D herbicides in systems simulating leaf surfaces.
    Su L; Sivey JD; Dai N
    Environ Sci Process Impacts; 2018 Aug; 20(8):1123-1135. PubMed ID: 29974906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical fate of solvent constituents of Corexit oil dispersants.
    Kover SC; Rosario-Ortiz FL; Linden KG
    Water Res; 2014 Apr; 52():101-11. PubMed ID: 24463172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of hydroxyl radicals with neonicotinoid insecticides: mechanism and changes in toxicity.
    Dell'arciprete ML; Santos-Juanes L; Sanz AA; Vicente R; Amat AM; Furlong JP; Mártire DO; Gonzalez MC
    Photochem Photobiol Sci; 2009 Jul; 8(7):1016-23. PubMed ID: 19582278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The atmospheric degradation reaction of dehydroabietic acid (DHAA) initiated by OH radicals and O3.
    Bai J; Sun X; Zhang C; Zhao Y; Gong C
    Chemosphere; 2013 Aug; 92(8):933-40. PubMed ID: 23561857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric chemistry of methyl and ethyl N,N,N',N'-tetramethylphosphorodiamidate and O,S-dimethyl methylphosphonothioate.
    Aschmann SM; Atkinson R
    J Phys Chem A; 2013 Oct; 117(43):11038-48. PubMed ID: 24134801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and products of the gas-phase reactions of divinyl sulfoxide with OH and NO3 radicals and O3.
    Aschmann SM; Tuazon EC; Long WD; Atkinson R
    J Phys Chem A; 2008 Sep; 112(37):8723-30. PubMed ID: 18717539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.