BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28006757)

  • 41. Ecotoxicity interspecies study of ionic liquids based on phosphonium and ammonium cations.
    Errazquin D; Mohamadou A; Dupont L; De Gaetano Y; García CB; Lomba L; Giner B
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65374-65384. PubMed ID: 34231157
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correlating toxicological effects of ionic liquids on Daphnia magna with in silico calculated linear free energy relationship descriptors.
    Cho CW; Yun YS
    Chemosphere; 2016 Jun; 152():207-13. PubMed ID: 26971173
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predictive modeling studies for the ecotoxicity of ionic liquids towards the green algae Scenedesmus vacuolatus.
    Das RN; Roy K
    Chemosphere; 2014 Jun; 104():170-6. PubMed ID: 24296027
    [TBL] [Abstract][Full Text] [Related]  

  • 44. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of interpretable machine learning models to improve the prediction performance of ionic liquids toxicity.
    Fan D; Xue K; Zhang R; Zhu W; Zhang H; Qi J; Zhu Z; Wang Y; Cui P
    Sci Total Environ; 2024 Jan; 908():168168. PubMed ID: 37918734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities.
    Kurnia KA; Sintra TE; Neves CM; Shimizu K; Canongia Lopes JN; Gonçalves F; Ventura SP; Freire MG; Santos LM; Coutinho JA
    Phys Chem Chem Phys; 2014 Oct; 16(37):19952-63. PubMed ID: 25119425
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acute toxicity and biodegradability of N-alkyl-N-methylmorpholinium and N-alkyl-DABCO based ionic liquids.
    Pretti C; Renzi M; Focardi SE; Giovani A; Monni G; Melai B; Rajamani S; Chiappe C
    Ecotoxicol Environ Saf; 2011 May; 74(4):748-53. PubMed ID: 21093055
    [TBL] [Abstract][Full Text] [Related]  

  • 49. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.
    Qin LT; Chen YH; Zhang X; Mo LY; Zeng HH; Liang YP
    Chemosphere; 2018 May; 198():122-129. PubMed ID: 29421720
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated evaluation of pharmaceutically active ionic liquids' (eco)toxicity through the inhibition of human carboxylesterase and Vibrio fischeri.
    Costa SP; Justina VD; Bica K; Vasiloiu M; Pinto PC; Saraiva ML
    J Hazard Mater; 2014 Jan; 265():133-41. PubMed ID: 24355776
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cytotoxicity estimation of ionic liquids based on their effective structural features.
    Fatemi MH; Izadiyan P
    Chemosphere; 2011 Jul; 84(5):553-63. PubMed ID: 21549407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cumulative impact assessment of hazardous ionic liquids towards aquatic species using risk assessment methods.
    Khan MI; Mubashir M; Zaini D; Mahnashi MH; Alyami BA; Alqarni AO; Show PL
    J Hazard Mater; 2021 Aug; 415():125364. PubMed ID: 33740721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Study of the antimicrobial activity of cyclic cation-based ionic liquids via experimental and group contribution QSAR model.
    Ghanem OB; Shah SN; Lévêque JM; Mutalib MIA; El-Harbawi M; Khan AS; Alnarabiji MS; Al-Absi HRH; Ullah Z
    Chemosphere; 2018 Mar; 195():21-28. PubMed ID: 29248749
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of imidazolium-based ionic liquids on bacterial growth inhibition investigated via experimental and QSAR modelling studies.
    Ghanem OB; Mutalib MI; El-Harbawi M; Gonfa G; Kait CF; Alitheen NB; Leveque JM
    J Hazard Mater; 2015 Oct; 297():198-206. PubMed ID: 25965417
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A QSPR approach to the ecotoxicity of ionic liquids (
    Paterno' A; Scire S; Musumarra G
    Toxicol Res (Camb); 2016 Jul; 5(4):1090-1096. PubMed ID: 30090414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stability of cellulase in ionic liquids: correlations between enzyme activity and COSMO-RS descriptors.
    Pedersen JN; Pérez B; Guo Z
    Sci Rep; 2019 Nov; 9(1):17479. PubMed ID: 31767916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. QSAR models for describing the toxicological effects of ILs against Staphylococcus aureus based on norm indexes.
    He W; Yan F; Jia Q; Xia S; Wang Q
    Chemosphere; 2018 Mar; 195():831-838. PubMed ID: 29289911
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toxicity of Quaternary Ammonium Compounds (QACs) as single compounds and mixtures to aquatic non-target microorganisms: Experimental data and predictive models.
    Di Nica V; Gallet J; Villa S; Mezzanotte V
    Ecotoxicol Environ Saf; 2017 Aug; 142():567-577. PubMed ID: 28494277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modelling for antimicrobial activities of ionic liquids towards Escherichia coli, Staphylococcus aureus and Candida albicans using linear free energy relationship descriptors.
    Cho CW; Park JS; Stolte S; Yun YS
    J Hazard Mater; 2016 Jul; 311():168-75. PubMed ID: 26974242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri.
    Melagraki G; Afantitis A; Sarimveis H; Igglessi-Markopoulou O; Alexandridis A
    Mol Divers; 2006 May; 10(2):213-21. PubMed ID: 16802064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.