BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28006899)

  • 1. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning.
    Zang Q; Mansouri K; Williams AJ; Judson RS; Allen DG; Casey WM; Kleinstreuer NC
    J Chem Inf Model; 2017 Jan; 57(1):36-49. PubMed ID: 28006899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSPR studies on water solubility, octanol-water partition coefficient and vapour pressure of pesticides.
    Duchowicz PR
    SAR QSAR Environ Res; 2020 Feb; 31(2):135-148. PubMed ID: 31842624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Property Estimation of Per- and Polyfluoroalkyl Substances: A Comparative Assessment of Estimation Methods.
    Lampic A; Parnis JM
    Environ Toxicol Chem; 2020 Apr; 39(4):775-786. PubMed ID: 32022323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid experimental measurements of physicochemical properties to inform models and testing.
    Nicolas CI; Mansouri K; Phillips KA; Grulke CM; Richard AM; Williams AJ; Rabinowitz J; Isaacs KK; Yau A; Wambaugh JF
    Sci Total Environ; 2018 Sep; 636():901-909. PubMed ID: 29729507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of boiling point, octanol-water partition coefficient, and retention time index of polycyclic aromatic hydrocarbons through machine learning.
    Sun L; Zhang M; Xie L; Gao Q; Xu X; Xu L
    Chem Biol Drug Des; 2023 Jan; 101(1):52-68. PubMed ID: 35852446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental risk assessment of selected organic chemicals based on TOC test and QSAR estimation models.
    Chi Y; Zhang H; Huang Q; Lin Y; Ye G; Zhu H; Dong S
    J Environ Sci (China); 2018 Feb; 64():23-31. PubMed ID: 29478644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictability of physicochemical properties of polychlorinated dibenzo-p-dioxins (PCDDs) based on single-molecular descriptor models.
    Kim M; Li LY; Grace JR
    Environ Pollut; 2016 Jun; 213():99-111. PubMed ID: 26878604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of a consensus approach for the calculation of physicochemical properties required for environmental fate assessments.
    Tebes-Stevens C; Patel JM; Koopmans M; Olmstead J; Hilal SH; Pope N; Weber EJ; Wolfe K
    Chemosphere; 2018 Mar; 194():94-106. PubMed ID: 29197820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P.
    Hughes LD; Palmer DS; Nigsch F; Mitchell JB
    J Chem Inf Model; 2008 Jan; 48(1):220-32. PubMed ID: 18186622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How accurate are physical property estimation programs for organosilicon compounds?
    Boethling R; Meylan W
    Environ Toxicol Chem; 2013 Nov; 32(11):2433-40. PubMed ID: 23846858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Estimation of Drug Melting Properties and Influence on Solubility Prediction.
    Wyttenbach N; Niederquell A; Kuentz M
    Mol Pharm; 2020 Jul; 17(7):2660-2671. PubMed ID: 32496787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating physical properties of organic compounds for environmental modeling from molecular structure.
    Hilal SH; Saravanaraj AN; Whiteside T; Carreira LA
    J Comput Aided Mol Des; 2007 Dec; 21(12):693-708. PubMed ID: 17989931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals.
    Bhhatarai B; Gramatica P
    Environ Sci Technol; 2011 Oct; 45(19):8120-8. PubMed ID: 20958003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.
    Dearden JC
    Environ Toxicol Chem; 2003 Aug; 22(8):1696-709. PubMed ID: 12924571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Quantitative Structure-Property Relationship (QSPR) Study of aliphatic alcohols by the method of dividing the molecular structure into substructure.
    Liu F; Cao C; Cheng B
    Int J Mol Sci; 2011; 12(4):2448-62. PubMed ID: 21731451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSPR prediction of physico-chemical properties for REACH.
    Dearden JC; Rotureau P; Fayet G
    SAR QSAR Environ Res; 2013; 24(4):279-318. PubMed ID: 23521394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of molecular representations for lipophilicity quantitative structure-property relationships with results from the SAMPL6 logP Prediction Challenge.
    Lui R; Guan D; Matthews S
    J Comput Aided Mol Des; 2020 May; 34(5):523-534. PubMed ID: 31933037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-property relationships for the calculation of the soil adsorption coefficient using machine learning algorithms with calculated chemical properties from open-source software.
    Kobayashi Y; Yoshida K
    Environ Res; 2021 May; 196():110363. PubMed ID: 33148423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel flame retardants: Estimating the physical-chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements.
    Zhang X; Sühring R; Serodio D; Bonnell M; Sundin N; Diamond ML
    Chemosphere; 2016 Feb; 144():2401-7. PubMed ID: 26613357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.