BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28006899)

  • 21. OPERA models for predicting physicochemical properties and environmental fate endpoints.
    Mansouri K; Grulke CM; Judson RS; Williams AJ
    J Cheminform; 2018 Mar; 10(1):10. PubMed ID: 29520515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Filling environmental data gaps with QSPR for ionic liquids: Modeling n-octanol/water coefficient.
    Rybinska A; Sosnowska A; Grzonkowska M; Barycki M; Puzyn T
    J Hazard Mater; 2016 Feb; 303():137-44. PubMed ID: 26530890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors.
    Kim M; Li LY; Grace JR; Yue C
    Environ Pollut; 2015 Jan; 196():462-72. PubMed ID: 25467694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental impact of PFAS: Filling data gaps using theoretical quantum chemistry and QSPR modeling.
    Mudlaff M; Sosnowska A; Gorb L; Bulawska N; Jagiello K; Puzyn T
    Environ Int; 2024 Mar; 185():108568. PubMed ID: 38493737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding quantitative structure-property relationships uncertainty in environmental fate modeling.
    Sarfraz Iqbal M; Golsteijn L; Öberg T; Sahlin U; Papa E; Kovarich S; Huijbregts MA
    Environ Toxicol Chem; 2013 Apr; 32(5):1069-76. PubMed ID: 23436749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unified physicochemical property estimation relationships (UPPER).
    Lian B; Yalkowsky SH
    J Pharm Sci; 2014 Sep; 103(9):2710-2723. PubMed ID: 24909850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QSPR models for predicting generator-column-derived octanol/water and octanol/air partition coefficients of polychlorinated biphenyls.
    Yuan J; Yu S; Zhang T; Yuan X; Cao Y; Yu X; Yang X; Yao W
    Ecotoxicol Environ Saf; 2016 Jun; 128():171-80. PubMed ID: 26943944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An alternative approach for the use of water solubility of nonionic pesticides in the modeling of the soil sorption coefficients.
    dos Reis RR; Sampaio SC; de Melo EB
    Water Res; 2014 Apr; 53():191-9. PubMed ID: 24525068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ToxCast program for prioritizing toxicity testing of environmental chemicals.
    Dix DJ; Houck KA; Martin MT; Richard AM; Setzer RW; Kavlock RJ
    Toxicol Sci; 2007 Jan; 95(1):5-12. PubMed ID: 16963515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility.
    Zhou D; Alelyunas Y; Liu R
    J Chem Inf Model; 2008 May; 48(5):981-7. PubMed ID: 18465850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites.
    Pinto CL; Mansouri K; Judson R; Browne P
    Chem Res Toxicol; 2016 Sep; 29(9):1410-27. PubMed ID: 27509301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development, validation and integration of in silico models to identify androgen active chemicals.
    Manganelli S; Roncaglioni A; Mansouri K; Judson RS; Benfenati E; Manganaro A; Ruiz P
    Chemosphere; 2019 Apr; 220():204-215. PubMed ID: 30584954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of physicochemical properties.
    Dearden JC
    Methods Mol Biol; 2012; 929():93-138. PubMed ID: 23007428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of chemical screening outcomes based on different partitioning property estimation methods.
    Zhang X; Brown TN; Wania F; Heimstad ES; Goss KU
    Environ Int; 2010 Aug; 36(6):514-20. PubMed ID: 20451252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of logS(W), logK(OA), and logK(OW) with electron-correlation.
    Chayawan ; Vikas
    J Hazard Mater; 2015 Oct; 296():68-81. PubMed ID: 25913673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of the physicochemical properties of PCDD/Fs using three-dimensional holographic vector of atomic interaction field.
    Xie K; Qiao S; Fu C; Qi JS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(5):704-10. PubMed ID: 22416864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One- to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties.
    Azencott CA; Ksikes A; Swamidass SJ; Chen JH; Ralaivola L; Baldi P
    J Chem Inf Model; 2007; 47(3):965-74. PubMed ID: 17338509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSPR models for the physicochemical properties of halogenated methyl-phenyl ethers.
    Xu HY; Zhang JY; Zou JW; Chen XS
    J Mol Graph Model; 2008 Apr; 26(7):1076-81. PubMed ID: 18060816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformal Prediction Classification of a Large Data Set of Environmental Chemicals from ToxCast and Tox21 Estrogen Receptor Assays.
    Norinder U; Boyer S
    Chem Res Toxicol; 2016 Jun; 29(6):1003-10. PubMed ID: 27152554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.