These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28007440)

  • 1. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.
    Emerson HP; Di Pietro S; Katsenovich Y; Szecsody J
    J Environ Radioact; 2017 Feb; 167():150-159. PubMed ID: 28007440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential for U sequestration with select minerals and sediments via base treatment.
    Emerson HP; Di Pietro S; Katsenovich Y; Szecsody J
    J Environ Manage; 2018 Oct; 223():108-114. PubMed ID: 29908396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model.
    Reinoso-Maset E; Ly J
    J Environ Radioact; 2016 Jun; 157():136-48. PubMed ID: 27077702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.
    Szecsody JE; Truex MJ; Qafoku NP; Wellman DM; Resch T; Zhong L
    J Contam Hydrol; 2013 Aug; 151():155-75. PubMed ID: 23851265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms.
    Alam MS; Cheng T
    J Contam Hydrol; 2014 Aug; 164():72-87. PubMed ID: 24954631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.
    Jing C; Landsberger S; Li YL
    J Environ Radioact; 2017 Sep; 175-176():1-6. PubMed ID: 28407570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uranium removal from contaminated groundwater by synthetic resins.
    Phillips DH; Gu B; Watson DB; Parmele CS
    Water Res; 2008 Jan; 42(1-2):260-8. PubMed ID: 17697694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uranium (VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid.
    Chen C; Zhao K; Shang J; Liu C; Wang J; Yan Z; Liu K; Wu W
    Environ Pollut; 2018 Sep; 240():219-226. PubMed ID: 29747106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of kinetic rate law parameters for the dissolution of natural autunite in the presence of aqueous bicarbonate ions at high concentrations.
    Gudavalli R; Katsenovich Y; Wellman D
    J Environ Radioact; 2018 Oct; 190-191():1-9. PubMed ID: 29729585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site.
    Dong W; Tokunaga TK; Davis JA; Wan J
    Environ Sci Technol; 2012 Feb; 46(3):1565-71. PubMed ID: 22191402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation.
    Dutova EM; Nikitenkov AN; Pokrovskiy VD; Banks D; Frengstad BS; Parnachev VP
    J Environ Radioact; 2017 Nov; 178-179():63-76. PubMed ID: 28780371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution of studtite [UO
    Kim J; Kim H; Kim WS; Um W
    J Environ Radioact; 2018 Sep; 189():57-66. PubMed ID: 29604494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling uranium transport in acidic contaminated groundwater with base addition.
    Zhang F; Luo W; Parker JC; Brooks SC; Watson DB; Jardine PM; Gu B
    J Hazard Mater; 2011 Jun; 190(1-3):863-8. PubMed ID: 21531075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation of groundwater and mineral composition of in situ leaching uranium in Bayanwula mining area, China.
    Li H; Muhammad AM; Tang Z
    PLoS One; 2024; 19(7):e0303595. PubMed ID: 38995911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of aluminum, uranium, and co-contaminants precipitation and adsorption during titration of acidic sediments.
    Tang G; Luo W; Watson DB; Brooks SC; Gu B
    Environ Sci Technol; 2013 Jun; 47(11):5787-93. PubMed ID: 23641798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient removal of uranium(VI) from aqueous systems by heat-treated carbon microspheres.
    Zhang X; Wang J; Li R; Liu Q; Li L; Yu J; Zhang M; Liu L
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):8202-9. PubMed ID: 23716076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone.
    Ma R; Liu C; Greskowiak J; Prommer H; Zachara J; Zheng C
    J Contam Hydrol; 2014 Jan; 156():27-37. PubMed ID: 24240103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.
    Yabusaki SB; Fang Y; Williams KH; Murray CJ; Ward AL; Dayvault RD; Waichler SR; Newcomer DR; Spane FA; Long PE
    J Contam Hydrol; 2011 Nov; 126(3-4):271-90. PubMed ID: 22115092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uranium levels in Cypriot groundwater samples determined by ICP-MS and α-spectroscopy.
    Charalambous C; Aletrari M; Piera P; Nicolaidou-Kanari P; Efstathiou M; Pashalidis I
    J Environ Radioact; 2013 Feb; 116():187-92. PubMed ID: 23195433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.