BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28007775)

  • 1. Beating the Clock in T-cell Acute Lymphoblastic Leukemia.
    Carroll WL; Aifantis I; Raetz E
    Clin Cancer Res; 2017 Feb; 23(4):873-875. PubMed ID: 28007775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-cell Acute Lymphoblastic Leukemia.
    Pikman Y; Alexe G; Roti G; Conway AS; Furman A; Lee ES; Place AE; Kim S; Saran C; Modiste R; Weinstock DM; Harris M; Kung AL; Silverman LB; Stegmaier K
    Clin Cancer Res; 2017 Feb; 23(4):1012-1024. PubMed ID: 28151717
    [No Abstract]   [Full Text] [Related]  

  • 3. The dual kinase inhibitor NVP-BEZ235 in combination with cytotoxic drugs exerts anti-proliferative activity towards acute lymphoblastic leukemia cells.
    Schult C; Dahlhaus M; Glass A; Fischer K; Lange S; Freund M; Junghanss C
    Anticancer Res; 2012 Feb; 32(2):463-74. PubMed ID: 22287733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Glucocorticoid Resistance in Pediatric T-cell Acute Lymphoblastic Leukemia by Increasing BIM Expression with the PI3K/mTOR Inhibitor BEZ235.
    Hall CP; Reynolds CP; Kang MH
    Clin Cancer Res; 2016 Feb; 22(3):621-32. PubMed ID: 26080839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTOR inhibition downregulates glucose-6-phosphate dehydrogenase and induces ROS-dependent death in T-cell acute lymphoblastic leukemia cells.
    Silic-Benussi M; Sharova E; Ciccarese F; Cavallari I; Raimondi V; Urso L; Corradin A; Kotler H; Scattolin G; Buldini B; Francescato S; Basso G; Minuzzo SA; Indraccolo S; D'Agostino DM; Ciminale V
    Redox Biol; 2022 May; 51():102268. PubMed ID: 35248829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL).
    Gazi M; Moharram SA; Marhäll A; Kazi JU
    Cancer Lett; 2017 Apr; 392():9-16. PubMed ID: 28159681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Phase I/II Study of the mTOR Inhibitor Everolimus in Combination with HyperCVAD Chemotherapy in Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia.
    Daver N; Boumber Y; Kantarjian H; Ravandi F; Cortes J; Rytting ME; Kawedia JD; Basnett J; Culotta KS; Zeng Z; Lu H; Richie MA; Garris R; Xiao L; Liu W; Baggerly KA; Jabbour E; O'Brien S; Burger J; Bendall LJ; Thomas D; Konopleva M
    Clin Cancer Res; 2015 Jun; 21(12):2704-14. PubMed ID: 25724525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update.
    Simioni C; Martelli AM; Zauli G; Vitale M; McCubrey JA; Capitani S; Neri LM
    J Cell Physiol; 2018 Oct; 233(10):6440-6454. PubMed ID: 29667769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple Akt inhibition as a new therapeutic strategy in T-cell acute lymphoblastic leukemia.
    Cani A; Simioni C; Martelli AM; Zauli G; Tabellini G; Ultimo S; McCubrey JA; Capitani S; Neri LM
    Oncotarget; 2015 Mar; 6(9):6597-610. PubMed ID: 25788264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of active mTOR inhibits primary leukemia T cells and synergizes with cytotoxic drugs and signaling inhibitors.
    Batista A; Barata JT; Raderschall E; Sallan SE; Carlesso N; Nadler LM; Cardoso AA
    Exp Hematol; 2011 Apr; 39(4):457-472.e3. PubMed ID: 21277936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PIM Kinase Inhibitors Block the Growth of Primary T-cell Acute Lymphoblastic Leukemia: Resistance Pathways Identified by Network Modeling Analysis.
    Lim JT; Singh N; Leuvano LA; Calvert VS; Petricoin EF; Teachey DT; Lock RB; Padi M; Kraft AS; Padi SKR
    Mol Cancer Ther; 2020 Sep; 19(9):1809-1821. PubMed ID: 32753387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia.
    Iacovelli S; Ricciardi MR; Allegretti M; Mirabilii S; Licchetta R; Bergamo P; Rinaldo C; Zeuner A; Foà R; Milella M; McCubrey JA; Martelli AM; Tafuri A
    Oncotarget; 2015 Oct; 6(31):32089-103. PubMed ID: 26392332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia.
    Hales EC; Taub JW; Matherly LH
    Cell Signal; 2014 Jan; 26(1):149-61. PubMed ID: 24140475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells.
    Martelli AM; Lonetti A; Buontempo F; Ricci F; Tazzari PL; Evangelisti C; Bressanin D; Cappellini A; Orsini E; Chiarini F
    Adv Biol Regul; 2014 Sep; 56():6-21. PubMed ID: 24819383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational drug combinations with CDK4/6 inhibitors in acute lymphoblastic leukemia.
    Bride KL; Hu H; Tikhonova A; Fuller TJ; Vincent TL; Shraim R; Li MM; Carroll WL; Raetz EA; Aifantis I; Teachey DT
    Haematologica; 2022 Aug; 107(8):1746-1757. PubMed ID: 34937317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian target of rapamycin inhibitor rapamycin enhances anti-leukemia effect of imatinib on Ph+ acute lymphoblastic leukemia cells.
    Yang X; He G; Gong Y; Zheng B; Shi F; Shi R; Yang X
    Eur J Haematol; 2014 Feb; 92(2):111-20. PubMed ID: 24112092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update.
    Evangelisti C; Chiarini F; McCubrey JA; Martelli AM
    Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29949919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells.
    Rao SS; O'Neil J; Liberator CD; Hardwick JS; Dai X; Zhang T; Tyminski E; Yuan J; Kohl NE; Richon VM; Van der Ploeg LH; Carroll PM; Draetta GF; Look AT; Strack PR; Winter CG
    Cancer Res; 2009 Apr; 69(7):3060-8. PubMed ID: 19318552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variegated clonality and rapid emergence of new molecular lesions in xenografts of acute lymphoblastic leukemia are associated with drug resistance.
    Nowak D; Liem NL; Mossner M; Klaumünzer M; Papa RA; Nowak V; Jann JC; Akagi T; Kawamata N; Okamoto R; Thoennissen NH; Kato M; Sanada M; Hofmann WK; Ogawa S; Marshall GM; Lock RB; Koeffler HP
    Exp Hematol; 2015 Jan; 43(1):32-43.e1-35. PubMed ID: 25450514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic targeting of CHK1 and mTOR in MYC-driven tumors.
    Song X; Wang L; Wang T; Hu J; Wang J; Tu R; Su H; Jiang J; Qing G; Liu H
    Carcinogenesis; 2021 Apr; 42(3):448-460. PubMed ID: 33206174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.