BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28007937)

  • 1. Directed evolution of P450cin for mediated electron transfer.
    Belsare KD; Horn T; Ruff AJ; Martinez R; Magnusson A; Holtmann D; Schrader J; Schwaneberg U
    Protein Eng Des Sel; 2017 Feb; 30(2):119-127. PubMed ID: 28007937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant.
    Nazor J; Dannenmann S; Adjei RO; Fordjour YB; Ghampson IT; Blanusa M; Roccatano D; Schwaneberg U
    Protein Eng Des Sel; 2008 Jan; 21(1):29-35. PubMed ID: 18093991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory evolution of P450 BM-3 for mediated electron transfer.
    Nazor J; Schwaneberg U
    Chembiochem; 2006 Apr; 7(4):638-44. PubMed ID: 16521141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1.
    Mi J; Schewe H; Buchhaupt M; Holtmann D; Schrader J
    World J Microbiol Biotechnol; 2016 Jul; 32(7):112. PubMed ID: 27263007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome P450cin (CYP176A1).
    Stok JE; Slessor KE; Farlow AJ; Hawkes DB; De Voss JJ
    Adv Exp Med Biol; 2015; 851():319-39. PubMed ID: 26002741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights on intermolecular FMN-heme domain interaction and the role of linker length in cytochrome P450cin fusion proteins.
    Belsare KD; Ruff AJ; Martinez R; Schwaneberg U
    Biol Chem; 2020 Oct; 401(11):1249-1255. PubMed ID: 32549121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxylation of non-substituted polycyclic aromatic hydrocarbons by cytochrome P450 BM3 engineered by directed evolution.
    Sideri A; Goyal A; Di Nardo G; Tsotsou GE; Gilardi G
    J Inorg Biochem; 2013 Mar; 120():1-7. PubMed ID: 23262457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the activity of cytochrome P450 BM-3 catalyzing indole hydroxylation by directed evolution.
    Pengpai Z; Sheng H; Lehe M; Yinlin L; Zhihua J; Guixiang H
    Appl Biochem Biotechnol; 2013 Sep; 171(1):93-103. PubMed ID: 23817788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen activation by P450(cin): Protein and substrate mutagenesis.
    Slessor KE; Farlow AJ; Cavaignac SM; Stok JE; De Voss JJ
    Arch Biochem Biophys; 2011 Mar; 507(1):154-62. PubMed ID: 20851096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2.
    Unterweger B; Bulach DM; Scoble J; Midgley DJ; Greenfield P; Lyras D; Johanesen P; Dumsday GJ
    Appl Environ Microbiol; 2016 Nov; 82(22):6507-6517. PubMed ID: 27590809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution.
    Kille S; Zilly FE; Acevedo JP; Reetz MT
    Nat Chem; 2011 Aug; 3(9):738-43. PubMed ID: 21860465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Enzymatic Route to α-Tocopherol Synthons: Aromatic Hydroxylation of Pseudocumene and Mesitylene with P450 BM3.
    Dennig A; Weingartner AM; Kardashliev T; Müller CA; Tassano E; Schürmann M; Ruff AJ; Schwaneberg U
    Chemistry; 2017 Dec; 23(71):17981-17991. PubMed ID: 28990705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P-LinK: A method for generating multicomponent cytochrome P450 fusions with variable linker length.
    Belsare KD; Ruff AJ; Martinez R; Shivange AV; Mundhada H; Holtmann D; Schrader J; Schwaneberg U
    Biotechniques; 2014 Jul; 57(1):13-20. PubMed ID: 25005689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam.
    Meharenna YT; Li H; Hawkes DB; Pearson AG; De Voss J; Poulos TL
    Biochemistry; 2004 Jul; 43(29):9487-94. PubMed ID: 15260491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450(cin) (CYP176A1) D241N: investigating the role of the conserved acid in the active site of cytochrome P450s.
    Stok JE; Yamada S; Farlow AJ; Slessor KE; De Voss JJ
    Biochim Biophys Acta; 2013 Mar; 1834(3):688-96. PubMed ID: 23305928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity.
    Behrendorff JB; Huang W; Gillam EM
    Biochem J; 2015 Apr; 467(1):1-15. PubMed ID: 25793416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes.
    Miyazawa M; Shindo M; Shimada T
    Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in p450cin.
    Meharenna YT; Slessor KE; Cavaignac SM; Poulos TL; De Voss JJ
    J Biol Chem; 2008 Apr; 283(16):10804-12. PubMed ID: 18270198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray crystal structure of cytochrome P450 monooxygenase CYP101J2 from Sphingobium yanoikuyae strain B2.
    Unterweger B; Drinkwater N; Johanesen P; Lyras D; Dumsday GJ; McGowan S
    Proteins; 2017 May; 85(5):945-950. PubMed ID: 27936485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering cytochrome P450 monooxygenase CYP 116B3 for high dealkylation activity.
    Liu L; Schmid RD; Urlacher VB
    Biotechnol Lett; 2010 Jun; 32(6):841-5. PubMed ID: 20213524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.