BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 28007984)

  • 1. Microbial competition in porous environments can select against rapid biofilm growth.
    Coyte KZ; Tabuteau H; Gaffney EA; Foster KR; Durham WM
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E161-E170. PubMed ID: 28007984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphogenesis of Biofilms in Porous Media and Control on Hydrodynamics.
    Kurz DL; Secchi E; Stocker R; Jimenez-Martinez J
    Environ Sci Technol; 2023 Apr; 57(14):5666-5677. PubMed ID: 36976631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Simplified Microbial Community Biofilms on Bacterial Retention in Porous Media under Conditions of Stormwater Biofiltration.
    Zhang Y; He Y; Sakowski EG; Preheim SP
    Microbiol Spectr; 2021 Oct; 9(2):e0110521. PubMed ID: 34704792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms.
    Kurz DL; Secchi E; Carrillo FJ; Bourg IC; Stocker R; Jimenez-Martinez J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122202119. PubMed ID: 35858419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fluid flow conditions on interactions between species in biofilms.
    Zhang W; Sileika T; Packman AI
    FEMS Microbiol Ecol; 2013 May; 84(2):344-54. PubMed ID: 23278485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial scattering in microfluidic crystal flows reveals giant active Taylor-Aris dispersion.
    Dehkharghani A; Waisbord N; Dunkel J; Guasto JS
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11119-11124. PubMed ID: 31097583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the impact of evolving biofilms on flow in porous media inside a microfluidic channel.
    Karimifard S; Li X; Elowsky C; Li Y
    Water Res; 2021 Jan; 188():116536. PubMed ID: 33125999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative microbial interactions drive spatial segregation in porous environments.
    Wu Y; Fu C; Peacock CL; Sørensen SJ; Redmile-Gordon MA; Xiao KQ; Gao C; Liu J; Huang Q; Li Z; Song P; Zhu Y; Zhou J; Cai P
    Nat Commun; 2023 Jul; 14(1):4226. PubMed ID: 37454222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal Biofilm Heterogeneities Enhance Solute Mixing and Chemical Reactions in Porous Media.
    Markale I; Carrel M; Kurz DL; Morales VL; Holzner M; Jiménez-Martínez J
    Environ Sci Technol; 2023 May; 57(21):8065-8074. PubMed ID: 37205794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A web of streamers: biofilm formation in a porous microfluidic device.
    Valiei A; Kumar A; Mukherjee PP; Liu Y; Thundat T
    Lab Chip; 2012 Dec; 12(24):5133-7. PubMed ID: 23123600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network.
    Aufrecht JA; Fowlkes JD; Bible AN; Morrell-Falvey J; Doktycz MJ; Retterer ST
    PLoS One; 2019; 14(6):e0218316. PubMed ID: 31246972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
    Wang S; Zhu H; Zheng G; Dong F; Liu C
    Appl Environ Microbiol; 2022 Nov; 88(22):e0107222. PubMed ID: 36300948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.
    Thomen P; Robert J; Monmeyran A; Bitbol AF; Douarche C; Henry N
    PLoS One; 2017; 12(4):e0175197. PubMed ID: 28403171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow environment and matrix structure interact to determine spatial competition in
    Nadell CD; Ricaurte D; Yan J; Drescher K; Bassler BL
    Elife; 2017 Jan; 6():. PubMed ID: 28084994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations.
    Vogt SJ; Sanderlin AB; Seymour JD; Codd SL
    Biotechnol Bioeng; 2013 May; 110(5):1366-75. PubMed ID: 23239390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic effects on bacterial biofilm development in a microfluidic environment.
    Kim J; Kim HS; Han S; Lee JY; Oh JE; Chung S; Park HD
    Lab Chip; 2013 May; 13(10):1846-9. PubMed ID: 23576069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial structure, cooperation and competition in biofilms.
    Nadell CD; Drescher K; Foster KR
    Nat Rev Microbiol; 2016 Sep; 14(9):589-600. PubMed ID: 27452230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for characterizing the co-development of biofilm and habitat heterogeneity.
    Li X; Song JL; Culotti A; Zhang W; Chopp DL; Lu N; Packman AI
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25866914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of Escherichia coli in porous media.
    Liu Y; Li J
    Environ Sci Technol; 2008 Jan; 42(2):443-9. PubMed ID: 18284144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of biofilm permeability on bio-clogging of porous media.
    Pintelon TR; Picioreanu C; Loosdrecht MC; Johns ML
    Biotechnol Bioeng; 2012 Apr; 109(4):1031-42. PubMed ID: 22095039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.