These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 28008064)

  • 21. Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water.
    Nina M; Roux B; Smith JC
    Biophys J; 1995 Jan; 68(1):25-39. PubMed ID: 7711248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallographic studies of the conformational changes that drive directional transmembrane ion movement in bacteriorhodopsin.
    Lanyi JK
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):339-45. PubMed ID: 11004449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From structure to mechanism: electron crystallographic studies of bacteriorhodopsin.
    Subramaniam S; Hirai T; Henderson R
    Philos Trans A Math Phys Eng Sci; 2002 May; 360(1794):859-74. PubMed ID: 12804283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle.
    Edman K; Nollert P; Royant A; Belrhali H; Pebay-Peyroula E; Hajdu J; Neutze R; Landau EM
    Nature; 1999 Oct; 401(6755):822-6. PubMed ID: 10548112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of archaerhodopsin-1 and -2: Common structural motif in archaeal light-driven proton pumps.
    Enami N; Yoshimura K; Murakami M; Okumura H; Ihara K; Kouyama T
    J Mol Biol; 2006 May; 358(3):675-85. PubMed ID: 16540121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of the bacteriorhodopsin mutant F219L N intermediate revealed by electron crystallography.
    Vonck J
    EMBO J; 2000 May; 19(10):2152-60. PubMed ID: 10811606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin.
    Sass HJ; Büldt G; Gessenich R; Hehn D; Neff D; Schlesinger R; Berendzen J; Ormos P
    Nature; 2000 Aug; 406(6796):649-53. PubMed ID: 10949308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle.
    Abramczyk H
    J Chem Phys; 2004 Jun; 120(23):11120-32. PubMed ID: 15268142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How environment supports a state: molecular dynamics simulations of two states in bacteriorhodopsin suggest lipid and water compensation.
    Jang H; Crozier PS; Stevens MJ; Woolf TB
    Biophys J; 2004 Jul; 87(1):129-45. PubMed ID: 15240452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structure of bacteriorhodopsin: an emerging consensus.
    Subramaniam S
    Curr Opin Struct Biol; 1999 Aug; 9(4):462-8. PubMed ID: 10449372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin.
    Ben-Nun M; Molnar F; Lu H; Phillips JC; Martínez TJ; Schulten K
    Faraday Discuss; 1998; (110):447-62; discussion 477-520. PubMed ID: 10822594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein.
    Kandt C; Gerwert K; Schlitter J
    Proteins; 2005 Feb; 58(3):528-37. PubMed ID: 15609339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin.
    Magyari K; Bálint Z; Simon V; Váró G
    J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping the structure of an integral membrane protein under semi-denaturing conditions by laser-induced oxidative labeling and mass spectrometry.
    Pan Y; Brown L; Konermann L
    J Mol Biol; 2009 Dec; 394(5):968-81. PubMed ID: 19804782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal.
    Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y
    J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacteriorhodopsin: the mechanism of 2D-array formation and the structure of retinal in the protein.
    Watts A
    Biophys Chem; 1995; 55(1-2):137-51. PubMed ID: 7632874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-ray-radiation-induced changes in bacteriorhodopsin structure.
    Borshchevskiy VI; Round ES; Popov AN; Büldt G; Gordeliy VI
    J Mol Biol; 2011 Jun; 409(5):813-25. PubMed ID: 21530535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacteriorhodopsin.
    Lanyi JK
    Annu Rev Physiol; 2004; 66():665-88. PubMed ID: 14977418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femtosecond-to-millisecond structural changes in a light-driven sodium pump.
    Skopintsev P; Ehrenberg D; Weinert T; James D; Kar RK; Johnson PJM; Ozerov D; Furrer A; Martiel I; Dworkowski F; Nass K; Knopp G; Cirelli C; Arrell C; Gashi D; Mous S; Wranik M; Gruhl T; Kekilli D; Brünle S; Deupi X; Schertler GFX; Benoit RM; Panneels V; Nogly P; Schapiro I; Milne C; Heberle J; Standfuss J
    Nature; 2020 Jul; 583(7815):314-318. PubMed ID: 32499654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.