These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 28008225)
1. Identifying Cell Type-Specific Transcription Factors by Integrating ChIP-seq and eQTL Data-Application to Monocyte Gene Regulation. Choudhury M; Ramsey SA Gene Regul Syst Bio; 2016; 10():105-110. PubMed ID: 28008225 [TBL] [Abstract][Full Text] [Related]
2. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data. Zhang L; Xue G; Liu J; Li Q; Wang Y BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100 [TBL] [Abstract][Full Text] [Related]
3. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Lizio M; Ishizu Y; Itoh M; Lassmann T; Hasegawa A; Kubosaki A; Severin J; Kawaji H; Nakamura Y; ; Suzuki H; Hayashizaki Y; Carninci P; Forrest AR Front Genet; 2015; 6():331. PubMed ID: 26635867 [TBL] [Abstract][Full Text] [Related]
5. Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data. Yang TH; Wu WS BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S13. PubMed ID: 24565265 [TBL] [Abstract][Full Text] [Related]
6. A map of direct TF-DNA interactions in the human genome. Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703 [TBL] [Abstract][Full Text] [Related]
7. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data. Levitsky V; Oshchepkov D; Zemlyanskaya E; Merkulova T Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825662 [TBL] [Abstract][Full Text] [Related]
8. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs. Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617 [TBL] [Abstract][Full Text] [Related]
9. regSNPs-ASB: A Computational Framework for Identifying Allele-Specific Transcription Factor Binding From ATAC-seq Data. Xu S; Feng W; Lu Z; Yu CY; Shao W; Nakshatri H; Reiter JL; Gao H; Chu X; Wang Y; Liu Y Front Bioeng Biotechnol; 2020; 8():886. PubMed ID: 32850739 [TBL] [Abstract][Full Text] [Related]
10. Single Nucleotide Polymorphisms at a Distance from Aryl Hydrocarbon Receptor (AHR) Binding Sites Influence AHR Ligand-Dependent Gene Expression. Neavin DR; Lee JH; Liu D; Ye Z; Li H; Wang L; Ordog T; Weinshilboum RM Drug Metab Dispos; 2019 Sep; 47(9):983-994. PubMed ID: 31292129 [TBL] [Abstract][Full Text] [Related]
11. MixChIP: a probabilistic method for cell type specific protein-DNA binding analysis. Rautio S; Lähdesmäki H BMC Bioinformatics; 2015 Dec; 16():413. PubMed ID: 26703974 [TBL] [Abstract][Full Text] [Related]
12. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data. Yang CC; Andrews EH; Chen MH; Wang WY; Chen JJ; Gerstein M; Liu CC; Cheng C BMC Genomics; 2016 Aug; 17(1):632. PubMed ID: 27519564 [TBL] [Abstract][Full Text] [Related]
13. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility. Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606 [TBL] [Abstract][Full Text] [Related]
14. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans. Brdlik CM; Niu W; Snyder M Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441 [TBL] [Abstract][Full Text] [Related]
15. Insights into mammalian transcription control by systematic analysis of ChIP sequencing data. Devailly G; Joshi A BMC Bioinformatics; 2018 Nov; 19(Suppl 14):409. PubMed ID: 30453943 [TBL] [Abstract][Full Text] [Related]
16. Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data. Yang CC; Chen MH; Lin SY; Andrews EH; Cheng C; Liu CC; Chen JJ BMC Genomics; 2017 Jan; 18(1):61. PubMed ID: 28068916 [TBL] [Abstract][Full Text] [Related]
17. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs. Ibn-Salem J; Andrade-Navarro MA BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198 [TBL] [Abstract][Full Text] [Related]
18. Epitope Tagging ChIP-Seq of DNA Binding Proteins Using CETCh-Seq. Meadows SK; Brandsmeier LA; Newberry KM; Betti MJ; Nesmith AS; Mackiewicz M; Partridge EC; Mendenhall EM; Myers RM Methods Mol Biol; 2020; 2117():3-34. PubMed ID: 31960370 [TBL] [Abstract][Full Text] [Related]
19. A novel transcriptional network for the androgen receptor in human epididymis epithelial cells. Yang R; Browne JA; Eggener SE; Leir SH; Harris A Mol Hum Reprod; 2018 Sep; 24(9):433-443. PubMed ID: 30016502 [TBL] [Abstract][Full Text] [Related]
20. Allele biased transcription factor binding across human brain regions gives mechanistic insight into eQTLs. Moyers BA; Loupe JM; Felker SA; Lawlor JMJ; Anderson AG; Rodriguez-Nunez I; Bunney WE; Bunney BG; Cartagena PM; Sequeira A; Watson SJ; Akil H; Mendenhall EM; Cooper GM; Myers RM bioRxiv; 2023 Oct; ():. PubMed ID: 37873117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]