These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28008347)

  • 1. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data.
    Dalponte M; Coomes DA
    Methods Ecol Evol; 2016 Oct; 7(10):1236-1245. PubMed ID: 28008347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A universal airborne LiDAR approach for tropical forest carbon mapping.
    Asner GP; Mascaro J; Muller-Landau HC; Vieilledent G; Vaudry R; Rasamoelina M; Hall JS; van Breugel M
    Oecologia; 2012 Apr; 168(4):1147-60. PubMed ID: 22033763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to map forest structure from aircraft, one tree at a time.
    Dalponte M; Frizzera L; Gianelle D
    Ecol Evol; 2018 Jun; 8(11):5611-5618. PubMed ID: 29938078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR.
    Spriggs RA; Vanderwel MC; Jones TA; Caspersen JP; Coomes DA
    PLoS One; 2019; 14(4):e0215238. PubMed ID: 31002682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating biomass and soil carbon change at the level of forest stands using repeated forest surveys assisted by airborne laser scanner data.
    Strîmbu VF; Næsset E; Ørka HO; Liski J; Petersson H; Gobakken T
    Carbon Balance Manag; 2023 May; 18(1):10. PubMed ID: 37209312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tropical tree size-frequency distributions from airborne lidar.
    Ferraz A; Saatchi SS; Longo M; Clark DB
    Ecol Appl; 2020 Oct; 30(7):e02154. PubMed ID: 32347996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allometric equations for integrating remote sensing imagery into forest monitoring programmes.
    Jucker T; Caspersen J; Chave J; Antin C; Barbier N; Bongers F; Dalponte M; van Ewijk KY; Forrester DI; Haeni M; Higgins SI; Holdaway RJ; Iida Y; Lorimer C; Marshall PL; Momo S; Moncrieff GR; Ploton P; Poorter L; Rahman KA; Schlund M; Sonké B; Sterck FJ; Trugman AT; Usoltsev VA; Vanderwel MC; Waldner P; Wedeux BM; Wirth C; Wöll H; Woods M; Xiang W; Zimmermann NE; Coomes DA
    Glob Chang Biol; 2017 Jan; 23(1):177-190. PubMed ID: 27381364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites.
    Mitchard ET; Feldpausch TR; Brienen RJ; Lopez-Gonzalez G; Monteagudo A; Baker TR; Lewis SL; Lloyd J; Quesada CA; Gloor M; Ter Steege H; Meir P; Alvarez E; Araujo-Murakami A; Aragão LE; Arroyo L; Aymard G; Banki O; Bonal D; Brown S; Brown FI; Cerón CE; Chama Moscoso V; Chave J; Comiskey JA; Cornejo F; Corrales Medina M; Da Costa L; Costa FR; Di Fiore A; Domingues TF; Erwin TL; Frederickson T; Higuchi N; Honorio Coronado EN; Killeen TJ; Laurance WF; Levis C; Magnusson WE; Marimon BS; Marimon Junior BH; Mendoza Polo I; Mishra P; Nascimento MT; Neill D; Núñez Vargas MP; Palacios WA; Parada A; Pardo Molina G; Peña-Claros M; Pitman N; Peres CA; Poorter L; Prieto A; Ramirez-Angulo H; Restrepo Correa Z; Roopsind A; Roucoux KH; Rudas A; Salomão RP; Schietti J; Silveira M; de Souza PF; Steininger MK; Stropp J; Terborgh J; Thomas R; Toledo M; Torres-Lezama A; van Andel TR; van der Heijden GM; Vieira IC; Vieira S; Vilanova-Torre E; Vos VA; Wang O; Zartman CE; Malhi Y; Phillips OL
    Glob Ecol Biogeogr; 2014 Aug; 23(8):935-946. PubMed ID: 26430387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+.
    Leitold V; Keller M; Morton DC; Cook BD; Shimabukuro YE
    Carbon Balance Manag; 2015 Dec; 10(1):3. PubMed ID: 25685178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring individual tree-based change with airborne lidar.
    Duncanson L; Dubayah R
    Ecol Evol; 2018 May; 8(10):5079-5089. PubMed ID: 29876083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring small pioneer trees in the forest-tundra ecotone: using multi-temporal airborne laser scanning data to model height growth.
    Hauglin M; Bollandsås OM; Gobakken T; Næsset E
    Environ Monit Assess; 2017 Dec; 190(1):12. PubMed ID: 29222601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.
    Levick SR; Hessenmöller D; Schulze ED
    Carbon Balance Manag; 2016 Dec; 11(1):7. PubMed ID: 27330548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in Northeast China.
    Zhong H; Lin W; Liu H; Ma N; Liu K; Cao R; Wang T; Ren Z
    Front Plant Sci; 2022; 13():964769. PubMed ID: 36212338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species discrimination and individual tree detection for predicting main dendrometric characteristics in mixed temperate forests by use of airborne laser scanning and ultra-high-resolution imagery.
    Apostol B; Petrila M; Lorenţ A; Ciceu A; Gancz V; Badea O
    Sci Total Environ; 2020 Jan; 698():134074. PubMed ID: 31505359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial heterogeneity of global forest aboveground carbon stocks and fluxes constrained by spaceborne lidar data and mechanistic modeling.
    Ma L; Hurtt G; Tang H; Lamb R; Lister A; Chini L; Dubayah R; Armston J; Campbell E; Duncanson L; Healey S; O'Neil-Dunne J; Ott L; Poulter B; Shen Q
    Glob Chang Biol; 2023 Jun; 29(12):3378-3394. PubMed ID: 37013906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomass map of the Brazilian Amazon from multisource remote sensing.
    Ometto JP; Gorgens EB; de Souza Pereira FR; Sato L; de Assis MLR; Cantinho R; Longo M; Jacon AD; Keller M
    Sci Data; 2023 Sep; 10(1):668. PubMed ID: 37777552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting a universal airborne light detection and ranging approach for tropical forest carbon mapping: scaling-up from tree to stand to landscape.
    Vincent G; Sabatier D; Rutishauser E
    Oecologia; 2014 Jun; 175(2):439-43. PubMed ID: 24615493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.
    Kristensen T; Næsset E; Ohlson M; Bolstad PV; Kolka R
    PLoS One; 2015; 10(10):e0138450. PubMed ID: 26426532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing forest carbon stocks' mapping using a hierarchical approach with machine learning and satellite imagery.
    Illarionova S; Tregubova P; Shukhratov I; Shadrin D; Efimov A; Burnaev E
    Sci Rep; 2024 Sep; 14(1):21032. PubMed ID: 39251734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New tree height allometries derived from terrestrial laser scanning reveal substantial discrepancies with forest inventory methods in tropical rainforests.
    Terryn L; Calders K; Meunier F; Bauters M; Boeckx P; Brede B; Burt A; Chave J; da Costa ACL; D'hont B; Disney M; Jucker T; Lau A; Laurance SGW; Maeda EE; Meir P; Krishna Moorthy SM; Nunes MH; Shenkin A; Sibret T; Verhelst TE; Wilkes P; Verbeeck H
    Glob Chang Biol; 2024 Aug; 30(8):e17473. PubMed ID: 39155688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.