These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function. Cheng X; Tamborini D; Carp SA; Shatrovoy O; Zimmerman B; Tyulmankov D; Siegel A; Blackwell M; Franceschini MA; Boas DA Opt Lett; 2018 Jun; 43(12):2756-2759. PubMed ID: 29905681 [TBL] [Abstract][Full Text] [Related]
3. Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow. Bartlett MF; Jordan SM; Hueber DM; Nelson MD J Appl Physiol (1985); 2021 Apr; 130(4):1183-1195. PubMed ID: 33571054 [TBL] [Abstract][Full Text] [Related]
4. A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA. Moore CH; Sunar U; Lin W Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194613 [TBL] [Abstract][Full Text] [Related]
5. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299 [TBL] [Abstract][Full Text] [Related]
6. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method. Wang Q; Pan M; Zang Z; Li DD J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935 [TBL] [Abstract][Full Text] [Related]
7. Fast time-domain diffuse correlation spectroscopy with superconducting nanowire single-photon detector: system validation and in vivo results. Parfentyeva V; Colombo L; Lanka P; Pagliazzi M; Brodu A; Noordzij N; Kolarczik M; Dalla Mora A; Re R; Contini D; Torricelli A; Durduran T; Pifferi A Sci Rep; 2023 Jul; 13(1):11982. PubMed ID: 37488188 [TBL] [Abstract][Full Text] [Related]
8. Quantification of blood flow index in diffuse correlation spectroscopy using long short-term memory architecture. Li Z; Ge Q; Feng J; Jia K; Zhao J Biomed Opt Express; 2021 Jul; 12(7):4131-4146. PubMed ID: 34457404 [TBL] [Abstract][Full Text] [Related]
9. Approaches to denoise the diffuse optical signals for tissue blood flow measurement. Zhang P; Gui Z; Guo G; Shang Y Biomed Opt Express; 2018 Dec; 9(12):6170-6185. PubMed ID: 31065421 [TBL] [Abstract][Full Text] [Related]
11. Time-domain diffuse correlation spectroscopy (TD-DCS) for noninvasive, depth-dependent blood flow quantification in human tissue in vivo. Samaei S; Sawosz P; Kacprzak M; Pastuszak Ż; Borycki D; Liebert A Sci Rep; 2021 Jan; 11(1):1817. PubMed ID: 33469124 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults. He L; Baker WB; Milej D; Kavuri VC; Mesquita RC; Busch DR; Abramson K; Jiang JY; Diop M; St Lawrence K; Amendolia O; Quattrone F; Balu R; Kofke WA; Yodh AG Neurophotonics; 2018 Oct; 5(4):045006. PubMed ID: 30480039 [TBL] [Abstract][Full Text] [Related]
13. Functional Time Domain Diffuse Correlation Spectroscopy. Ozana N; Lue N; Renna M; Robinson MB; Martin A; Zavriyev AI; Carr B; Mazumder D; Blackwell MH; Franceschini MA; Carp SA Front Neurosci; 2022; 16():932119. PubMed ID: 35979338 [TBL] [Abstract][Full Text] [Related]
14. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow. Mazumder D; Wu MM; Ozana N; Tamborini D; Franceschini MA; Carp SA Neurophotonics; 2021 Jul; 8(3):035005. PubMed ID: 34395719 [No Abstract] [Full Text] [Related]
15. Analytical models for time-domain diffuse correlation spectroscopy for multi-layer and heterogeneous turbid media. Li J; Qiu L; Poon CS; Sunar U Biomed Opt Express; 2017 Dec; 8(12):5518-5532. PubMed ID: 29296485 [TBL] [Abstract][Full Text] [Related]
16. Lossless Compressed Sensing of Photon Counts for Fast Diffuse Correlation Spectroscopy. Biswas A; Parthasarathy AB IEEE Access; 2022; 10():129754-129762. PubMed ID: 36644002 [TBL] [Abstract][Full Text] [Related]
17. Time domain diffuse correlation spectroscopy with a high coherence pulsed source: Pagliazzi M; Sekar SKV; Colombo L; Martinenghi E; Minnema J; Erdmann R; Contini D; Mora AD; Torricelli A; Pifferi A; Durduran T Biomed Opt Express; 2017 Nov; 8(11):5311-5325. PubMed ID: 29188122 [TBL] [Abstract][Full Text] [Related]
18. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy. Yazdi HS; O'Sullivan TD; Leproux A; Hill B; Durkin A; Telep S; Lam J; Yazdi SS; Police AM; Carroll RM; Combs FJ; Strömberg T; Yodh AG; Tromberg BJ J Biomed Opt; 2017 Apr; 22(4):45003. PubMed ID: 28384703 [TBL] [Abstract][Full Text] [Related]
19. High Frequency Sampling of TTL Pulses on a Raspberry Pi for Diffuse Correlation Spectroscopy Applications. Tivnan M; Gurjar R; Wolf DE; Vishwanath K Sensors (Basel); 2015 Aug; 15(8):19709-22. PubMed ID: 26274961 [TBL] [Abstract][Full Text] [Related]
20. In vivo time-domain diffuse correlation spectroscopy above the water absorption peak. Colombo L; Pagliazzi M; Konugolu Venkata Sekar S; Contini D; Durduran T; Pifferi A Opt Lett; 2020 Jul; 45(13):3377-3380. PubMed ID: 32630849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]