These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 28008475)
1. Existence of Traveling Waves for the Generalized F-KPP Equation. Kollár R; Novak S Bull Math Biol; 2017 Mar; 79(3):525-559. PubMed ID: 28008475 [TBL] [Abstract][Full Text] [Related]
2. Speed of invasion of an expanding population by a horizontally transmitted trait. Venegas-Ortiz J; Allen RJ; Evans MR Genetics; 2014 Feb; 196(2):497-507. PubMed ID: 24298062 [TBL] [Abstract][Full Text] [Related]
3. Determining the optimal coefficient of the spatially periodic Fisher-KPP equation that minimizes the spreading speed. Ito R J Math Biol; 2020 May; 80(6):1953-1970. PubMed ID: 32211951 [TBL] [Abstract][Full Text] [Related]
4. Revisiting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-extinction dichotomy. El-Hachem M; McCue SW; Jin W; Du Y; Simpson MJ Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20190378. PubMed ID: 31611732 [TBL] [Abstract][Full Text] [Related]
5. Non-vanishing sharp-fronted travelling wave solutions of the Fisher-Kolmogorov model. El-Hachem M; McCue SW; Simpson MJ Math Med Biol; 2022 Sep; 39(3):226-250. PubMed ID: 35818827 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon. Kim YJ; Mimura M; Yoon C Bull Math Biol; 2023 Mar; 85(5):35. PubMed ID: 36971898 [TBL] [Abstract][Full Text] [Related]
7. Spatial Gene Frequency Waves Under Genotype-Dependent Dispersal. Novak S; Kollár R Genetics; 2017 Jan; 205(1):367-374. PubMed ID: 27815360 [TBL] [Abstract][Full Text] [Related]
8. Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source? Salako RB; Shen W; Xue S J Math Biol; 2019 Sep; 79(4):1455-1490. PubMed ID: 31324959 [TBL] [Abstract][Full Text] [Related]
9. Invading and Receding Sharp-Fronted Travelling Waves. El-Hachem M; McCue SW; Simpson MJ Bull Math Biol; 2021 Feb; 83(4):35. PubMed ID: 33611673 [TBL] [Abstract][Full Text] [Related]
10. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations. Sánchez-Garduño F; Pérez-Velázquez J ScientificWorldJournal; 2016; 2016():5620839. PubMed ID: 27689131 [TBL] [Abstract][Full Text] [Related]
11. Speed selection for traveling-wave solutions to the diffusion-reaction equation with cubic reaction term and Burgers nonlinear convection. Sabelnikov VA; Lipatnikov AN Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033004. PubMed ID: 25314526 [TBL] [Abstract][Full Text] [Related]
13. The Fisher-KPP equation over simple graphs: varied persistence states in river networks. Du Y; Lou B; Peng R; Zhou M J Math Biol; 2020 Apr; 80(5):1559-1616. PubMed ID: 32006101 [TBL] [Abstract][Full Text] [Related]
14. Convergence to travelling waves in Fisher's population genetics model with a non-Lipschitzian reaction term. Drábek P; Takáč P J Math Biol; 2017 Oct; 75(4):929-972. PubMed ID: 28197714 [TBL] [Abstract][Full Text] [Related]
15. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. Zhao L; Wang ZC; Ruan S J Math Biol; 2018 Dec; 77(6-7):1871-1915. PubMed ID: 29564532 [TBL] [Abstract][Full Text] [Related]
16. Plant Dynamics, Birth-Jump Processes, and Sharp Traveling Waves. Rodríguez N; Malanson G Bull Math Biol; 2018 Jun; 80(6):1655-1687. PubMed ID: 29748838 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous Diffusion and Nonlinear Advection in a One-Dimensional Fisher-KPP Problem. Palencia JLD; Rahman SU; Redondo AN Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885139 [TBL] [Abstract][Full Text] [Related]
18. Biological invasion with a porous medium type diffusion in a heterogeneous space. Park H; Kim YJ J Math Biol; 2024 Jul; 89(3):31. PubMed ID: 39033468 [TBL] [Abstract][Full Text] [Related]
19. Forced Traveling Waves in a Reaction-Diffusion Equation with Strong Allee Effect and Shifting Habitat. Li B; Otto G Bull Math Biol; 2023 Nov; 85(12):121. PubMed ID: 37922015 [TBL] [Abstract][Full Text] [Related]
20. SPREADING SPEEDS AND TRAVELING WAVES FOR NON-COOPERATIVE INTEGRO-DIFFERENCE SYSTEMS. Wang H; Castillo-Chavez C Discrete Continuous Dyn Syst Ser B; 2012 Sep; 17(6):2243-2266. PubMed ID: 24899868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]