These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28008962)

  • 1. A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement.
    Valuchova S; Fulnecek J; Petrov AP; Tripsianes K; Riha K
    Sci Rep; 2016 Dec; 6():39653. PubMed ID: 28008962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Protein-Nucleic Acid Interaction Assay Based on Protein-Induced Fluorescence Enhancement.
    Fulneček J; Říha K
    Methods Mol Biol; 2021; 2209():109-117. PubMed ID: 33201465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demystifying PIFE: The Photophysics Behind the Protein-Induced Fluorescence Enhancement Phenomenon in Cy3.
    Stennett EM; Ciuba MA; Lin S; Levitus M
    J Phys Chem Lett; 2015 May; 6(10):1819-23. PubMed ID: 26263254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Environment and DNA Orientation Affect Protein-Induced Cy3 Fluorescence Enhancement.
    Nguyen B; Ciuba MA; Kozlov AG; Levitus M; Lohman TM
    Biophys J; 2019 Jul; 117(1):66-73. PubMed ID: 31235181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions.
    Hwang H; Myong S
    Chem Soc Rev; 2014 Feb; 43(4):1221-9. PubMed ID: 24056732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibilities of the method of step-by-step complication of ligand structure in studies of protein--nucleic acid interactions: mechanisms of functioning of some replication, repair, topoisomerization, and restriction enzymes.
    Bugreev DV; Nevinsky GA
    Biochemistry (Mosc); 1999 Mar; 64(3):237-49. PubMed ID: 10205294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Molecule Imaging With One Color Fluorescence.
    Qiu Y; Myong S
    Methods Enzymol; 2016; 581():33-51. PubMed ID: 27793285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule fluorescence of nucleic acids.
    Mollova ET
    Curr Opin Chem Biol; 2002 Dec; 6(6):823-8. PubMed ID: 12470737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence approaches to quantifying biomolecular interactions.
    Royer CA; Scarlata SF
    Methods Enzymol; 2008; 450():79-106. PubMed ID: 19152857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein induced fluorescence enhancement as a single molecule assay with short distance sensitivity.
    Hwang H; Kim H; Myong S
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7414-8. PubMed ID: 21502529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence Redox Blinking Adaptable to Structural Analysis of Nucleic Acids.
    Miyata T; Shimada N; Maruyama A; Kawai K
    Chemistry; 2018 May; 24(26):6755-6761. PubMed ID: 29341353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence technologies for monitoring interactions between biological molecules in vitro.
    Deshayes S; Divita G
    Prog Mol Biol Transl Sci; 2013; 113():109-43. PubMed ID: 23244790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fluorometric assay for DNA cleavage reactions characterized with BamHI restriction endonuclease.
    Lee SP; Porter D; Chirikjian JG; Knutson JR; Han MK
    Anal Biochem; 1994 Aug; 220(2):377-83. PubMed ID: 7978282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial state of DNA-Dye complex sets the stage for protein induced fluorescence modulation.
    Rashid F; Raducanu VS; Zaher MS; Tehseen M; Habuchi S; Hamdan SM
    Nat Commun; 2019 May; 10(1):2104. PubMed ID: 31068591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleic acid fluorescent probes for biological sensing.
    Su X; Xiao X; Zhang C; Zhao M
    Appl Spectrosc; 2012 Nov; 66(11):1249-62. PubMed ID: 23146180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophysical properties of the hemicyanine Dy-630 and its potential as a single-molecule fluorescent probe for biophysical applications.
    Kumari N; Ciuba MA; Levitus M
    Methods Appl Fluoresc; 2019 Nov; 8(1):015004. PubMed ID: 31585443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sensitive two-color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels.
    Jing D; Agnew J; Patton WF; Hendrickson J; Beechem JM
    Proteomics; 2003 Jul; 3(7):1172-80. PubMed ID: 12872218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor.
    Zhang X; Daaboul GG; Spuhler PS; Dröge P; Ünlü MS
    Nanoscale; 2016 Mar; 8(10):5587-98. PubMed ID: 26890964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utility of a two-color fluorescence electrophoretic mobility shift assay procedure for the analysis of DNA replication complexes.
    Jing D; Beechem JM; Patton WF
    Electrophoresis; 2004 Aug; 25(15):2439-46. PubMed ID: 15300760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state fluorescence polarization/anisotropy for the study of protein interactions.
    James NG; Jameson DM
    Methods Mol Biol; 2014; 1076():29-42. PubMed ID: 24108621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.