These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28009177)

  • 1. Reversion of a Parent {130}⟨310⟩_{α^{''}} Martensitic Twinning System at the Origin of {332}⟨113⟩_{β} Twins Observed in Metastable β Titanium Alloys.
    Castany P; Yang Y; Bertrand E; Gloriant T
    Phys Rev Lett; 2016 Dec; 117(24):245501. PubMed ID: 28009177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation Induced Hierarchical Twinning Coupled with Omega Transformation in a Metastable β-Ti Alloy.
    Mantri SA; Sun F; Choudhuri D; Alam T; Gwalani B; Prima F; Banerjee R
    Sci Rep; 2019 Feb; 9(1):1334. PubMed ID: 30718639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twinning behavior of orthorhombic-α" martensite in a Ti-7.5Mo alloy.
    Ji X; Gutierrez-Urrutia I; Emura S; Liu T; Hara T; Min X; Ping D; Tsuchiya K
    Sci Technol Adv Mater; 2019; 20(1):401-411. PubMed ID: 31105803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.
    Li SJ; Cui TC; Hao YL; Yang R
    Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications.
    Guo S; Meng QK; Cheng XN; Zhao XQ
    J Mech Behav Biomed Mater; 2014 Oct; 38():26-32. PubMed ID: 25011015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength-Ductility Synergy in a Metastable β Titanium Alloy by Stress Induced Interfacial Twin Boundary ω Phase at Cryogenic Temperatures.
    Li Y; Liao Z; Zhang W; Wu Z; Zhou C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33113977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy.
    Tahara M; Okano N; Inamura T; Hosoda H
    Sci Rep; 2017 Nov; 7(1):15715. PubMed ID: 29146921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy.
    Elmay W; Prima F; Gloriant T; Bolle B; Zhong Y; Patoor E; Laheurte P
    J Mech Behav Biomed Mater; 2013 Feb; 18():47-56. PubMed ID: 23246554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.
    Ramarolahy A; Castany P; Prima F; Laheurte P; Péron I; Gloriant T
    J Mech Behav Biomed Mater; 2012 May; 9():83-90. PubMed ID: 22498286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.
    Zhu Y; Wang L; Wang M; Liu Z; Qin J; Zhang D; Lu W
    J Mech Behav Biomed Mater; 2012 Aug; 12():151-9. PubMed ID: 22732481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys.
    Sun F; Hao YL; Nowak S; Gloriant T; Laheurte P; Prima F
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1864-72. PubMed ID: 22098885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ 3D crystallographic characterization of deformation-induced martensitic transformation in a metastable Fe-Cr-Ni austenitic alloy by X-ray microtomography.
    Takakuwa O; Iwano T; Hirayama K; Toda H; Takeuchi A; Uesugi M
    Sci Rep; 2024 Jun; 14(1):14445. PubMed ID: 38910158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Hieda J; Ishimoto T; Nakano T
    Acta Biomater; 2012 Jul; 8(6):2392-400. PubMed ID: 22342893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of low modulus beta titanium alloys designed from the electronic approach.
    Laheurte P; Prima F; Eberhardt A; Gloriant T; Wary M; Patoor E
    J Mech Behav Biomed Mater; 2010 Nov; 3(8):565-73. PubMed ID: 20826362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Work hardening behavior of hot-rolled metastable Fe
    Kwon H; Harjo S; Kawasaki T; Gong W; Jeong SG; Kim ES; Sathiyamoorthi P; Kato H; Kim HS
    Sci Technol Adv Mater; 2022; 23(1):579-586. PubMed ID: 36212683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.
    Zhao X; Niinomi M; Nakai M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminating β, α and α″ phases in metastable β titanium alloys via segmentation: A combined electron backscattering diffraction and energy-dispersive X-ray spectroscopy approach.
    Niessen F; Gazder AA
    Ultramicroscopy; 2020 Apr; 211():112943. PubMed ID: 32062056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of {332}〈113〉 twinning in a Ti-15Mo alloy by
    Gutierrez-Urrutia I; Li CL; Ji X; Emura S; Tsuchiya K
    Sci Technol Adv Mater; 2018; 19(1):474-483. PubMed ID: 29915624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexion-mediated martensitic phase transformation in Titanium.
    Zhang J; Tasan CC; Lai MJ; Dippel AC; Raabe D
    Nat Commun; 2017 Feb; 8():14210. PubMed ID: 28145484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T
    Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.