BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 28009229)

  • 1. Transoral robotic surgery for sellar tumors: first clinical study.
    Chauvet D; Hans S; Missistrano A; Rebours C; Bakkouri WE; Lot G
    J Neurosurg; 2017 Oct; 127(4):941-948. PubMed ID: 28009229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical features of skull base and oral cavity: a pilot study to determine the accessibility of the sella by transoral robotic-assisted surgery.
    Amelot A; Trunet S; Degos V; André O; Dionnet A; Cornu P; Hans S; Chauvet D
    Neurosurg Rev; 2015 Oct; 38(4):723-30. PubMed ID: 25924605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transoral robotic-assisted skull base surgery to approach the sella turcica: cadaveric study.
    Chauvet D; Missistrano A; Hivelin M; Carpentier A; Cornu P; Hans S
    Neurosurg Rev; 2014 Oct; 37(4):609-17. PubMed ID: 24848406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Exploration of feasibility and safety of transoral robotic surgery in pharyngolaryngeal tumors].
    Fang JG; Meng LZ; Wang JH; Yuan XD; Rao YS; Yang F; Feng YJ; Wei YX
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 Jul; 53(7):512-518. PubMed ID: 30032494
    [No Abstract]   [Full Text] [Related]  

  • 5. Early assessment of feasibility and technical specificities of transoral robotic surgery using the da Vinci Xi.
    Gorphe P; Von Tan J; El Bedoui S; Hartl DM; Auperin A; Qassemyar Q; Moya-Plana A; Janot F; Julieron M; Temam S
    J Robot Surg; 2017 Dec; 11(4):455-461. PubMed ID: 28064382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of transoral robotic surgery in pharyngolaryngeal tumour resection].
    Chen W; Xu FL; Chen Y; Zhang Y; Wu KM; Cheng Y; Ji JF; Zheng HL
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Sep; 51(9):695-698. PubMed ID: 27666710
    [No Abstract]   [Full Text] [Related]  

  • 7. Robotic skull base surgery: preclinical investigations to human clinical application.
    O'Malley BW; Weinstein GS
    Arch Otolaryngol Head Neck Surg; 2007 Dec; 133(12):1215-9. PubMed ID: 18086962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transoral robotic surgery for the base of tongue squamous cell carcinoma: a preliminary comparison between da Vinci Xi and Si.
    Alessandrini M; Pavone I; Micarelli A; Caporale C
    J Robot Surg; 2018 Sep; 12(3):417-423. PubMed ID: 28905287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transoral robotic assisted resection of the parapharyngeal space.
    Mendelsohn AH
    Head Neck; 2015 Feb; 37(2):273-80. PubMed ID: 24797361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perioperative safety, feasibility, and oncologic utility of transoral robotic surgery with da Vinci Xi platform.
    Gabrysz-Forget F; Mur T; Dolan R; Yarlagadda B
    J Robot Surg; 2020 Feb; 14(1):85-89. PubMed ID: 30825098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic total thyroidectomy with modified radical neck dissection via unilateral retroauricular approach.
    Byeon HK; Holsinger FC; Tufano RP; Chung HJ; Kim WS; Koh YW; Choi EC
    Ann Surg Oncol; 2014 Nov; 21(12):3872-5. PubMed ID: 25227305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic and robot-assisted skull base neurosurgery: systematic review of current applications and future directions.
    Pangal DJ; Cote DJ; Ruzevick J; Yarovinsky B; Kugener G; Wrobel B; Ference EH; Swanson M; Hung AJ; Donoho DA; Giannotta S; Zada G
    Neurosurg Focus; 2022 Jan; 52(1):E15. PubMed ID: 34973668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transoral Robotic Surgery.
    Yee S
    AORN J; 2017 Jan; 105(1):73-84. PubMed ID: 28034402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transoral Robotic Surgical Proficiency Via Real-Time Tactile Collision Awareness System.
    Mendelsohn AH; Kim C; Song J; Singh A; Le T; Abiri A; Berke GS; Geoghegan R
    Laryngoscope; 2020 Dec; 130 Suppl 6():S1-S17. PubMed ID: 32865822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Feasibility and perioperative safety of transoral robotic surgery with da Vinci Xi platform].
    Xu CZ; Wu CP; Chi-Yao JY; Zhou L; Tao L
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2022 May; 57(5):565-571. PubMed ID: 35610674
    [No Abstract]   [Full Text] [Related]  

  • 16. Sella turcica anatomy by three-dimensional computed tomography for an endonasal transsphenoidal approach to pituitary adenoma.
    Xiao SX; Ma YH; Zhan RY; Wen L
    Minim Invasive Neurosurg; 2011 Aug; 54(4):162-6. PubMed ID: 21922444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parapharyngeal space surgery via a transoral approach using a robotic surgical system: transoral robotic surgery.
    Park YM; De Virgilio A; Kim WS; Chung HP; Kim SH
    J Laparoendosc Adv Surg Tech A; 2013 Mar; 23(3):231-6. PubMed ID: 23343202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary study of transoral robotic surgery for pharyngeal cancer in Japan.
    Fujiwara K; Fukuhara T; Kitano H; Fujii T; Koyama S; Yamasaki A; Kataoka H; Takeuchi H
    J Robot Surg; 2016 Mar; 10(1):11-7. PubMed ID: 26645072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transoral robotic-assisted surgery for the approach to anterior cervical spine lesions.
    Molteni G; Greco MG; Presutti L
    Eur Arch Otorhinolaryngol; 2017 Nov; 274(11):4011-4016. PubMed ID: 28864959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early results of a safety and feasibility clinical trial of a novel single-port flexible robot for transoral robotic surgery.
    Chan JYK; Wong EWY; Tsang RK; Holsinger FC; Tong MCF; Chiu PWY; Ng SSM
    Eur Arch Otorhinolaryngol; 2017 Nov; 274(11):3993-3996. PubMed ID: 28871410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.