These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 28009835)

  • 41. RTK with the Assistance of an IMU-Based Pedestrian Navigation Algorithm for Smartphones.
    Niu Z; Nie P; Tao L; Sun J; Zhu B
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conditioning and PPP processing of smartphone GNSS measurements in realistic environments.
    Shinghal G; Bisnath S
    Satell Navig; 2021; 2(1):10. PubMed ID: 34790903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A New DGNSS Positioning Infrastructure for Android Smartphones.
    Weng D; Gan X; Chen W; Ji S; Lu Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Triple Checked Partial Ambiguity Resolution for GPS/BDS RTK Positioning.
    Lu L; Ma L; Liu W; Wu T; Chen B
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fault-Free Protection Level Equation for CLAS PPP-RTK and Experimental Evaluations.
    Kim E; Song J; Shin Y; Kim S; Son PW; Park S; Park S
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591258
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield.
    Yang H; Yang X; Sun B; Su H
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27556466
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Tightly Coupled RTK/INS Algorithm with Ambiguity Resolution in the Position Domain for Ground Vehicles in Harsh Urban Environments.
    Li W; Li W; Cui X; Zhao S; Lu M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29973573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring Signals on L5/E5a/B2a for Dual-Frequency GNSS Precise Point Positioning.
    Naciri N; Hauschild A; Bisnath S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone.
    Wu Q; Sun M; Zhou C; Zhang P
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance Analysis of Positioning Solution Using Low-Cost Single-Frequency U-Blox Receiver Based on Baseline Length Constraint.
    Lu L; Ma L; Wu T; Chen X
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597390
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations.
    Tu R; Zhang R; Lu C; Zhang P; Liu J; Lu X
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of a Low-Cost Smart Sensor GNSS System for Real-Time Positioning and Orientation for Floating Offshore Wind Platform.
    Revert Calabuig N; Laarossi I; Álvarez González A; Pérez Nuñez A; González Pérez L; García-Minguillán AC
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679722
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Improved Long-Period Precise Time-Relative Positioning Method Based on RTS Data.
    Lu Y; Ji S; Tu R; Weng D; Lu X; Chen W
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implementation and Performance of a Deeply-Coupled GNSS Receiver with Low-Cost MEMS Inertial Sensors for Vehicle Urban Navigation.
    Feng X; Zhang T; Lin T; Tang H; Niu X
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application.
    Sun R; Cheng Q; Xue D; Wang G; Ochieng WY
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186851
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Validation of the Accuracy and Convergence Time of Real Time Kinematic Results Using a Single Galileo Navigation System.
    Siejka Z
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30044401
    [TBL] [Abstract][Full Text] [Related]  

  • 57. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm.
    Kong J; Mao X; Li S
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27153068
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints.
    He K; Xu T; Förste C; Petrovic S; Barthelmes F; Jiang N; Flechtner F
    Sensors (Basel); 2016 Apr; 16(4):470. PubMed ID: 27043580
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Precise Point Positioning Using World's First Dual-Frequency GPS/GALILEO Smartphone.
    Elmezayen A; El-Rabbany A
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance Evaluation of Real-Time Precise Point Positioning with Both BDS-3 and BDS-2 Observations.
    Pan L; Li X; Yu W; Dai W; Kuang C; Chen J; Chen F; Xia P
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.