BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28009847)

  • 1. New Iridoid Glucosides from Caryopteris incana (Thunb.) Miq. and Their α-Glucosidase Inhibitory Activities.
    Mao XD; Chou GX; Zhao SM; Zhang CG
    Molecules; 2016 Dec; 21(12):. PubMed ID: 28009847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oleanane-Type Saponins from the Roots of Ligulariopsis shichuana and Their α-Glucosidase Inhibitory Activities.
    Wu HB; Liu TT; Wang WS; Feng JC; Tian HM
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29149016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caryopincaolide M, a rearranged abietane diterpenoid with new skeleton and a new iridoid from Caryopteris incana.
    Zhang CG; Chen T; Mao XD; Zhao SM; Chou GX
    J Nat Med; 2019 Jan; 73(1):210-216. PubMed ID: 30474771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Undescribed morroniside-like secoiridoid diglycosides with α-glucosidase inhibitory activity from Corni Fructus.
    Ye XS; He J; Xu JK; He XL; Xia CY; Yan Y; Lian WW; Zhang WK
    Phytochemistry; 2020 Mar; 171():112232. PubMed ID: 31911266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenylpropanoid and Iridoid Glucosides from the Whole Plant of Hemiphragma heterophyllum and Their alpha-Glucosidase Inhibitory Activities.
    Li YH; Dai JM; Yang C; Jiang MY; Xiong Y; Li YK; Li HR; Tian K; Huang XZ
    Planta Med; 2020 Feb; 86(3):205-211. PubMed ID: 31918446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant and lipoxygenase inhibiting new iridoid glucosides from Caryopteris odorata.
    Shahzadi T; Abbasi MA; Ur-Rehman A; Riaz T; Khan KM; Ashraf M; Afzal I; Akhtar MN; Ajaib M
    Nat Prod Res; 2013 Mar; 27(4-5):302-13. PubMed ID: 22424117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new glucoside with a potent α-glucosidase inhibitory activity from
    Elbermawi A; Halim AF; Mansour ES; Ahmad KF; Ashour A; Amen Y; Shimizu K
    Nat Prod Res; 2021 Mar; 35(6):976-983. PubMed ID: 31140302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abietane diterpenoids from Caryopteris incana (Thunb.) Miq.
    Zhao SM; Chou GX; Yang QS; Wang W; Zhou JL
    Org Biomol Chem; 2016 Apr; 14(14):3510-20. PubMed ID: 26952788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new triterpenoid glucoside from
    Chen GY; Zhang B; Zhao T; Nidhal N; Jia-Li W; Zhou XM; Chun-Yan D
    Nat Prod Res; 2020 Jul; 34(13):1874-1878. PubMed ID: 30689410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iridoid Glucosides and Diterpenoids from Caryopteris glutinosa.
    Luo G; Ye Q; Du B; Wang F; Zhang GL; Luo Y
    J Nat Prod; 2016 Apr; 79(4):886-93. PubMed ID: 26900877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acylated glucosylflavones as α-glucosidase inhibitors from Tinospora crispa leaf.
    Chang CC; Ho SL; Lee SS
    Bioorg Med Chem; 2015 Jul; 23(13):3388-96. PubMed ID: 25999202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenylethanoid Glycosides from Caryopteris aureoglandulosa and Their Biological Activities.
    Chen Y; Xu HT; Tian T; Wei XH; Chou GX
    Chem Biodivers; 2023 Apr; 20(4):e202201037. PubMed ID: 36907662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and purification of water-soluble iridoid glucosides by high speed counter-current chromatography combined with macroporous resin column separation.
    Yue HL; Zhao XH; Wang QL; Tao YD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Oct; 936():57-62. PubMed ID: 23981483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of α-glucosidase inhibition by different fractions of three species of Labiatae extracts: a new diabetes treatment model.
    Rouzbehan S; Moein S; Homaei A; Moein MR
    Pharm Biol; 2017 Dec; 55(1):1483-1488. PubMed ID: 28367665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites.
    Sichaem J; Aree T; Lugsanangarm K; Tip-Pyang S
    Pharm Biol; 2017 Dec; 55(1):1436-1441. PubMed ID: 28320255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Resolution α-Glucosidase Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Antidiabetic Compounds in Eremanthus crotonoides (Asteraceae).
    Silva EL; Lobo JF; Vinther JM; Borges RM; Staerk D
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-Glucosidase Inhibition and Antibacterial Activity of Secondary Metabolites from the Ecuadorian Species Clinopodium taxifolium (Kunth) Govaerts.
    Morocho V; Valle A; García J; Gilardoni G; Cartuche L; Suárez AI
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29324657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acylated iridoid glucosides from Pseudocaryopteris paniculata (C.B.Clarke) P.D.Cantino.
    Xu HT; Chen Y; Zhang CG; Ju ZC; Wang YL; Chou GX
    Phytochemistry; 2021 Jan; 181():112569. PubMed ID: 33130374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chepraecoxins A-G, ent-Kaurane Diterpenoids with α-Glucosidase Inhibitory Activities from Chelonopsis praecox.
    Deng ZT; Geng CA; Yang TH; Xiang CL; Chen JJ
    Fitoterapia; 2019 Jan; 132():60-67. PubMed ID: 30500669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of α-glucosidase inhibitors from Potentilla kleiniana Wight et Arn using solvent and flow-rate gradient high-speed counter-current chromatography target-guided by ultrafiltration HPLC-MS screening.
    Liu M; Huang X; Liu Q; Li X; Chen M; Zhu Y; Chen X
    Phytochem Anal; 2019 Nov; 30(6):661-668. PubMed ID: 31059189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.