These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28010103)

  • 1. Optimized virtual orbital subspace for faster GW calculations in localized basis.
    Bruneval F
    J Chem Phys; 2016 Dec; 145(23):234110. PubMed ID: 28010103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrapolating Unconverged GW Energies up to the Complete Basis Set Limit with Linear Regression.
    Bruneval F; Maliyov I; Lapointe C; Marinica MC
    J Chem Theory Comput; 2020 Jul; 16(7):4399-4407. PubMed ID: 32491851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies.
    Bruneval F
    J Chem Phys; 2012 May; 136(19):194107. PubMed ID: 22612080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasiparticle virtual orbitals in electron propagator calculations.
    Flores-Moreno R; Ortiz JV
    J Chem Phys; 2008 Apr; 128(16):164105. PubMed ID: 18447419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking the Starting Points of the GW Approximation for Molecules.
    Bruneval F; Marques MA
    J Chem Theory Comput; 2013 Jan; 9(1):324-9. PubMed ID: 26589035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Efficient
    Koval P; Ljungberg MP; Müller M; Sánchez-Portal D
    J Chem Theory Comput; 2019 Aug; 15(8):4564-4580. PubMed ID: 31318555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Order Scaling Quasiparticle Self-Consistent GW for Molecules.
    Förster A; Visscher L
    Front Chem; 2021; 9():736591. PubMed ID: 34540804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical GW scheme for electronic structure of 3d-transition-metal monoxide anions: ScO
    Byun YM; Öğüt S
    J Chem Phys; 2019 Oct; 151(13):134305. PubMed ID: 31594362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasiparticle self-consistent GW method for the spectral properties of complex materials.
    Bruneval F; Gatti M
    Top Curr Chem; 2014; 347():99-135. PubMed ID: 24563009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levels of self-consistency in the GW approximation.
    Stan A; Dahlen NE; van Leeuwen R
    J Chem Phys; 2009 Mar; 130(11):114105. PubMed ID: 19317529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides.
    Hung L; Bruneval F; Baishya K; Öğüt S
    J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speeding up GW Calculations to Meet the Challenge of Large Scale Quasiparticle Predictions.
    Gao W; Xia W; Gao X; Zhang P
    Sci Rep; 2016 Nov; 6():36849. PubMed ID: 27833140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Finite-Field Approach for GW Calculations beyond the Random Phase Approximation.
    Ma H; Govoni M; Gygi F; Galli G
    J Chem Theory Comput; 2019 Jan; 15(1):154-164. PubMed ID: 30521333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning of Quasiparticle Energies in Molecules and Clusters.
    Çaylak O; Baumeier B
    J Chem Theory Comput; 2021 Aug; 17(8):4891-4900. PubMed ID: 34314186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Dynamic
    Bruneval F; Förster A
    J Chem Theory Comput; 2024 Apr; 20(8):3218-3230. PubMed ID: 38603811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing GW Approaches for Predicting Core Level Binding Energies.
    van Setten MJ; Costa R; Viñes F; Illas F
    J Chem Theory Comput; 2018 Feb; 14(2):877-883. PubMed ID: 29320628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outstanding performance of configuration interaction singles and doubles using exact exchange Kohn-Sham orbitals in real-space numerical grid method.
    Lim J; Choi S; Kim J; Kim WY
    J Chem Phys; 2016 Dec; 145(22):224309. PubMed ID: 27984905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the theoretical scaling limit for predicting quasiparticle energies: the stochastic GW approach.
    Neuhauser D; Gao Y; Arntsen C; Karshenas C; Rabani E; Baer R
    Phys Rev Lett; 2014 Aug; 113(7):076402. PubMed ID: 25170715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasiparticle band gap of ZnO: high accuracy from the conventional G⁰W⁰ approach.
    Shih BC; Xue Y; Zhang P; Cohen ML; Louie SG
    Phys Rev Lett; 2010 Oct; 105(14):146401. PubMed ID: 21230850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.