These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 28010769)
21. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. Mittal AK; Kumar S; Banerjee UC J Colloid Interface Sci; 2014 Oct; 431():194-9. PubMed ID: 25000181 [TBL] [Abstract][Full Text] [Related]
22. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Ajitha B; Reddy YA; Reddy PS Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():164-72. PubMed ID: 24239759 [TBL] [Abstract][Full Text] [Related]
23. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Gopinath V; MubarakAli D; Priyadarshini S; Priyadharsshini NM; Thajuddin N; Velusamy P Colloids Surf B Biointerfaces; 2012 Aug; 96():69-74. PubMed ID: 22521683 [TBL] [Abstract][Full Text] [Related]
24. Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites. Mahmoud KH Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():434-40. PubMed ID: 25523046 [TBL] [Abstract][Full Text] [Related]
25. Antimicrobial activity of fluorescent Ag nanoparticles. Bera RK; Mandal SM; Raj CR Lett Appl Microbiol; 2014 Jun; 58(6):520-6. PubMed ID: 24460988 [TBL] [Abstract][Full Text] [Related]
26. Effect of nano-silver, nano-copper, deconex and benzalkonium chloride on biofilm formation and expression of transcription regulatory quorum sensing gene (rh1R) in drug-resistance Pseudomonas aeruginosa burn isolates. Gholamrezazadeh M; Shakibaie MR; Monirzadeh F; Masoumi S; Hashemizadeh Z Burns; 2018 May; 44(3):700-708. PubMed ID: 29290510 [TBL] [Abstract][Full Text] [Related]
27. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Rathi Sre PR; Reka M; Poovazhagi R; Arul Kumar M; Murugesan K Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():1137-44. PubMed ID: 25189525 [TBL] [Abstract][Full Text] [Related]
28. Appraisal of the antimicrobial and cytotoxic potentials of nanoparticles biosynthesized from the extracts of Dumlupınar B; Karatoprak GŞ; Fırat M; Akkol EK Front Biosci (Landmark Ed); 2021 Nov; 26(11):1089-1096. PubMed ID: 34856755 [No Abstract] [Full Text] [Related]
29. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Mohan S; Oluwafemi OS; George SC; Jayachandran VP; Lewu FB; Songca SP; Kalarikkal N; Thomas S Carbohydr Polym; 2014 Jun; 106():469-74. PubMed ID: 24721103 [TBL] [Abstract][Full Text] [Related]
30. Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites. Nguyen VQ; Ishihara M; Kinoda J; Hattori H; Nakamura S; Ono T; Miyahira Y; Matsui T J Nanobiotechnology; 2014 Dec; 12():49. PubMed ID: 25467525 [TBL] [Abstract][Full Text] [Related]
31. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Rao NH; N L; Pammi SV; Kollu P; S G; P L Mater Sci Eng C Mater Biol Appl; 2016 May; 62():553-7. PubMed ID: 26952458 [TBL] [Abstract][Full Text] [Related]
32. Antibacterial activity of extracts and constituents of Pelargonium sidoides and Pelargonium reniforme. Kayser O; Kolodziej H Planta Med; 1997 Dec; 63(6):508-10. PubMed ID: 9434601 [TBL] [Abstract][Full Text] [Related]
33. Antimicrobial activity of flavonoids from Pelargonium radula (Cav.) L'Hérit. Pepeljnjak S; Kalodera Z; Zovko M Acta Pharm; 2005 Dec; 55(4):431-5. PubMed ID: 16375833 [TBL] [Abstract][Full Text] [Related]
34. Antibacterial activities of Ligaria cuneifolia and Jodina rhombifolia leaf extracts against phytopathogenic and clinical bacteria. Soberón JR; Sgariglia MA; Dip Maderuelo MR; Andina ML; Sampietro DA; Vattuone MA J Biosci Bioeng; 2014 Nov; 118(5):599-605. PubMed ID: 24894684 [TBL] [Abstract][Full Text] [Related]
35. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells. Korshed P; Li L; Liu Z; Mironov A; Wang T Int J Nanomedicine; 2018; 13():89-101. PubMed ID: 29317818 [TBL] [Abstract][Full Text] [Related]
36. Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Mohan Kumar K; Sinha M; Mandal BK; Ghosh AR; Siva Kumar K; Sreedhara Reddy P Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():228-33. PubMed ID: 22381795 [TBL] [Abstract][Full Text] [Related]
37. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition. Holmes AM; Lim J; Studier H; Roberts MS Nanotoxicology; 2016 Dec; 10(10):1503-1514. PubMed ID: 27636544 [TBL] [Abstract][Full Text] [Related]
38. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties. Ashour AA; Raafat D; El-Gowelli HM; El-Kamel AH Int J Nanomedicine; 2015; 10():7207-21. PubMed ID: 26664112 [TBL] [Abstract][Full Text] [Related]
39. Antimicrobial evaluation of selected naturally occurring oxyprenylated secondary metabolites. Di Giulio M; Genovese S; Fiorito S; Epifano F; Nostro A; Cellini L Nat Prod Res; 2016 Aug; 30(16):1870-4. PubMed ID: 27498831 [TBL] [Abstract][Full Text] [Related]