BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28010847)

  • 1. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW).
    Liu YJ; André S; Saint Cristau L; Lagresle S; Hannas Z; Calvosa É; Devos O; Duponchel L
    Anal Chim Acta; 2017 Feb; 952():9-17. PubMed ID: 28010847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study.
    Catelani TA; Santos JR; Páscoa RNMJ; Pezza L; Pezza HR; Lopes JA
    Talanta; 2018 Mar; 179():292-299. PubMed ID: 29310234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process modeling and control applied to real-time monitoring of distillation processes by near-infrared spectroscopy.
    de Oliveira RR; Pedroza RHP; Sousa AO; Lima KMG; de Juan A
    Anal Chim Acta; 2017 Sep; 985():41-53. PubMed ID: 28864193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopy and chemometrics for on-line control of glucose fermentation by Saccharomyces cerevisiae.
    Avila TC; Poppi RJ; Lunardi I; Tizei PA; Pereira GA
    Biotechnol Prog; 2012; 28(6):1598-604. PubMed ID: 22887966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an in-line Raman analytical method for commercial-scale CHO cell culture process monitoring: Influence of measurement channels and batch number on model performance.
    Yan X; Dong X; Wan Y; Gao D; Chen Z; Zhang Y; Zheng Z; Chen K; Jiao J; Sun Y; He Z; Nie L; Fan X; Wang H; Qu H
    Biotechnol J; 2024 Jan; 19(1):e2300395. PubMed ID: 38180295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivariate statistical process control in product quality review assessment - A case study.
    Kharbach M; Cherrah Y; Vander Heyden Y; Bouklouze A
    Ann Pharm Fr; 2017 Nov; 75(6):446-454. PubMed ID: 28797469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables.
    Clavaud M; Roggo Y; Von Daeniken R; Liebler A; Schwabe JO
    Talanta; 2013 Jul; 111():28-38. PubMed ID: 23622522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-line monitoring of alcohol precipitation by near-infrared spectroscopy in conjunction with multivariate batch modeling.
    Huang H; Qu H
    Anal Chim Acta; 2011 Nov; 707(1-2):47-56. PubMed ID: 22027118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.
    Mehdizadeh H; Lauri D; Karry KM; Moshgbar M; Procopio-Melino R; Drapeau D
    Biotechnol Prog; 2015; 31(4):1004-13. PubMed ID: 25825868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis.
    Berry B; Moretto J; Matthews T; Smelko J; Wiltberger K
    Biotechnol Prog; 2015; 31(2):566-77. PubMed ID: 25504860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of in-line near infrared spectroscopy and multivariate batch modeling for process monitoring in fluid bed granulation.
    Kona R; Qu H; Mattes R; Jancsik B; Fahmy RM; Hoag SW
    Int J Pharm; 2013 Aug; 452(1-2):63-72. PubMed ID: 23618967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Monitoring method of extraction process for Schisandrae Chinensis Fructus based on near infrared spectroscopy and multivariate statistical process control].
    Xu M; Zhang L; Yue HS; Pang HW; Ye ZL; Ding L
    Zhongguo Zhong Yao Za Zhi; 2017 Oct; 42(20):3906-3911. PubMed ID: 29243426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of multivariate data analysis techniques to improve glucose concentration prediction in mammalian cell cultivations by Raman spectroscopy.
    Kozma B; Salgó A; Gergely S
    J Pharm Biomed Anal; 2018 Sep; 158():269-279. PubMed ID: 29894949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review.
    Buckley K; Ryder AG
    Appl Spectrosc; 2017 Jun; 71(6):1085-1116. PubMed ID: 28534676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemometric quality control of chromatographic purity.
    Laursen K; Frederiksen SS; Leuenhagen C; Bro R
    J Chromatogr A; 2010 Oct; 1217(42):6503-10. PubMed ID: 20846660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy.
    Li B; Ray BH; Leister KJ; Ryder AG
    Anal Chim Acta; 2013 Sep; 796():84-91. PubMed ID: 24016587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Batch process monitoring using on-line MIR spectroscopy.
    van Sprang EN; Ramaker HJ; Boelens HF; Westerhuis JA; Whiteman D; Baines D; Weaver I
    Analyst; 2003 Jan; 128(1):98-102. PubMed ID: 12572811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-line and real-time prediction of recombinant antibody titer by in situ Raman spectroscopy.
    André S; Cristau LS; Gaillard S; Devos O; Calvosa É; Duponchel L
    Anal Chim Acta; 2015 Sep; 892():148-52. PubMed ID: 26388485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian cell culture monitoring using in situ spectroscopy: Is your method really optimised?
    André S; Lagresle S; Hannas Z; Calvosa É; Duponchel L
    Biotechnol Prog; 2017 Mar; 33(2):308-316. PubMed ID: 28019710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments.
    Kim B; Woo YA
    J Pharm Biomed Anal; 2018 May; 154():278-284. PubMed ID: 29567570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.