These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 28011172)
1. Wake-sleep and cardiovascular regulatory changes in rats made obese by a high-fat diet. Luppi M; Al-Jahmany AA; Del Vecchio F; Cerri M; Di Cristoforo A; Hitrec T; Martelli D; Perez E; Zamboni G; Amici R Behav Brain Res; 2017 Mar; 320():347-355. PubMed ID: 28011172 [TBL] [Abstract][Full Text] [Related]
2. Waking and sleeping in the rat made obese through a high-fat hypercaloric diet. Luppi M; Cerri M; Martelli D; Tupone D; Del Vecchio F; Di Cristoforo A; Perez E; Zamboni G; Amici R Behav Brain Res; 2014 Jan; 258():145-52. PubMed ID: 24149066 [TBL] [Abstract][Full Text] [Related]
3. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat. Stephenson R; Caron AM; Famina S Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184 [TBL] [Abstract][Full Text] [Related]
4. Sleep/Wake Physiology and Quantitative Electroencephalogram Analysis of the Neuroligin-3 Knockout Rat Model of Autism Spectrum Disorder. Thomas AM; Schwartz MD; Saxe MD; Kilduff TS Sleep; 2017 Oct; 40(10):. PubMed ID: 28958035 [TBL] [Abstract][Full Text] [Related]
5. Selected Contribution: Regulation of sleep-wake states in response to intermittent hypoxic stimuli applied only in sleep. Hamrahi H; Stephenson R; Mahamed S; Liao KS; Horner RL J Appl Physiol (1985); 2001 Jun; 90(6):2490-501. PubMed ID: 11356818 [TBL] [Abstract][Full Text] [Related]
6. Diet/Energy Balance Affect Sleep and Wakefulness Independent of Body Weight. Perron IJ; Pack AI; Veasey S Sleep; 2015 Dec; 38(12):1893-903. PubMed ID: 26158893 [TBL] [Abstract][Full Text] [Related]
7. Cardiovascular and respiratory profiles during the sleep-wake cycle of rats previously submitted to chronic intermittent hypoxia. Bazilio DS; Bonagamba LGH; Moraes DJA; Machado BH Exp Physiol; 2019 Sep; 104(9):1408-1419. PubMed ID: 31099915 [TBL] [Abstract][Full Text] [Related]
8. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure. Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548 [TBL] [Abstract][Full Text] [Related]
9. Effects of acoustic stimulation on cardiovascular regulation during sleep. Silvani A; Bojic T; Cianci T; Franzini C; Lodi CA; Predieri S; Zoccoli G; Lenzi P Sleep; 2003 Mar; 26(2):201-5. PubMed ID: 12683480 [TBL] [Abstract][Full Text] [Related]
10. Cold exposure and sleep in the rat: effects on sleep architecture and the electroencephalogram. Cerri M; Ocampo-Garces A; Amici R; Baracchi F; Capitani P; Jones CA; Luppi M; Perez E; Parmeggiani PL; Zamboni G Sleep; 2005 Jun; 28(6):694-705. PubMed ID: 16477956 [TBL] [Abstract][Full Text] [Related]
11. A rodent model of traumatic stress induces lasting sleep and quantitative electroencephalographic disturbances. Nedelcovych MT; Gould RW; Zhan X; Bubser M; Gong X; Grannan M; Thompson AT; Ivarsson M; Lindsley CW; Conn PJ; Jones CK ACS Chem Neurosci; 2015 Mar; 6(3):485-93. PubMed ID: 25581551 [TBL] [Abstract][Full Text] [Related]
12. Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington's disease. Fisher SP; Black SW; Schwartz MD; Wilk AJ; Chen TM; Lincoln WU; Liu HW; Kilduff TS; Morairty SR Brain; 2013 Jul; 136(Pt 7):2159-72. PubMed ID: 23801738 [TBL] [Abstract][Full Text] [Related]
14. Significance of the zero sum principle for circadian, homeostatic and allostatic regulation of sleep-wake state in the rat. Stephenson R; Caron AM; Famina S Physiol Behav; 2016 Dec; 167():35-48. PubMed ID: 27594095 [TBL] [Abstract][Full Text] [Related]
15. Dynamic changes in sleep pattern during post-partum in normal pregnancy in rat model. Sivadas N; Radhakrishnan A; Aswathy BS; Kumar VM; Gulia KK Behav Brain Res; 2017 Mar; 320():264-274. PubMed ID: 27899291 [TBL] [Abstract][Full Text] [Related]
16. Electrical stimulation of the rostral ventrolateral medulla promotes wakefulness in rats. Chen CY; Kuo TB; Hsieh IT; Yang CC Sleep Med; 2013 Nov; 14(11):1076-84. PubMed ID: 24047536 [TBL] [Abstract][Full Text] [Related]
17. Estradiol suppresses recovery of REM sleep following sleep deprivation in ovariectomized female rats. Schwartz MD; Mong JA Physiol Behav; 2011 Oct; 104(5):962-71. PubMed ID: 21722658 [TBL] [Abstract][Full Text] [Related]
18. Cardiopulmonary regulation after rapid-eye-movement sleep deprivation. DeMesquita S; Hale GA J Appl Physiol (1985); 1992 Mar; 72(3):970-6. PubMed ID: 1568993 [TBL] [Abstract][Full Text] [Related]
19. On-line detection of sleep-wake states and application to produce intermittent hypoxia only in sleep in rats. Hamrahi H; Chan B; Horner RL J Appl Physiol (1985); 2001 Jun; 90(6):2130-40. PubMed ID: 11356775 [TBL] [Abstract][Full Text] [Related]
20. Estradiol treatment modulates spontaneous sleep and recovery after sleep deprivation in castrated male rats. Wibowo E; Deurveilher S; Wassersug RJ; Semba K Behav Brain Res; 2012 Jan; 226(2):456-64. PubMed ID: 22004978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]