These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28011717)

  • 1. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species.
    Ozga JA; Kaur H; Savada RP; Reinecke DM
    J Exp Bot; 2017 Apr; 68(8):1885-1894. PubMed ID: 28011717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.
    Savada RP; Ozga JA; Jayasinghege CPA; Waduthanthri KD; Reinecke DM
    Plant Mol Biol; 2017 Oct; 95(3):313-331. PubMed ID: 28861701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High temperature susceptibility of sexual reproduction in crop plants.
    Lohani N; Singh MB; Bhalla PL
    J Exp Bot; 2020 Jan; 71(2):555-568. PubMed ID: 31560053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat stress regimes for the investigation of pollen thermotolerance in crop plants.
    Mesihovic A; Iannacone R; Firon N; Fragkostefanakis S
    Plant Reprod; 2016 Jun; 29(1-2):93-105. PubMed ID: 27016360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A seed change in our understanding of legume biology from genomics to the efficient cooperation between nodulation and arbuscular mycorrhizal fungi.
    Foyer CH; Nguyen HT; Lam HM
    Plant Cell Environ; 2018 Sep; 41(9):1949-1954. PubMed ID: 30520104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon fluxes and environmental interactions during legume development, with a specific focus on Pisum sativum.
    Morin A; Maurousset L; Vriet C; Lemoine R; Doidy J; Pourtau N
    Physiol Plant; 2022 May; 174(3):e13729. PubMed ID: 35662039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat Stress in Legume Seed Setting: Effects, Causes, and Future Prospects.
    Liu Y; Li J; Zhu Y; Jones A; Rose RJ; Song Y
    Front Plant Sci; 2019; 10():938. PubMed ID: 31417579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Legumes-The art and science of environmentally sustainable agriculture.
    Foyer CH; Nguyen H; Lam HM
    Plant Cell Environ; 2019 Jan; 42(1):1-5. PubMed ID: 30575076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators.
    Zaman M; Kurepin LV; Catto W; Pharis RP
    J Sci Food Agric; 2015 Jul; 95(9):1777-85. PubMed ID: 25267003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability.
    Albacete AA; Martínez-Andújar C; Pérez-Alfocea F
    Biotechnol Adv; 2014; 32(1):12-30. PubMed ID: 24513173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea.
    Kumari P; Rastogi A; Yadav S
    Mol Biol Rep; 2020 Jun; 47(6):4659-4670. PubMed ID: 32133603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat Priming of Lentil (
    Bhardwaj A; Sita K; Sehgal A; Bhandari K; Kumar S; Prasad PVV; Jha U; Kumar J; Siddique KHM; Nayyar H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed vigour and crop establishment: extending performance beyond adaptation.
    Finch-Savage WE; Bassel GW
    J Exp Bot; 2016 Feb; 67(3):567-91. PubMed ID: 26585226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking the potential of orphan legumes.
    Cullis C; Kunert KJ
    J Exp Bot; 2017 Apr; 68(8):1895-1903. PubMed ID: 28003311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Legume genetic resources and transcriptome dynamics under abiotic stress conditions.
    Abdelrahman M; Jogaiah S; Burritt DJ; Tran LP
    Plant Cell Environ; 2018 Sep; 41(9):1972-1983. PubMed ID: 29314055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dormancy and germination: How does the crop seed decide?
    Shu K; Meng YJ; Shuai HW; Liu WG; Du JB; Liu J; Yang WY
    Plant Biol (Stuttg); 2015 Nov; 17(6):1104-12. PubMed ID: 26095078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormone balance and abiotic stress tolerance in crop plants.
    Peleg Z; Blumwald E
    Curr Opin Plant Biol; 2011 Jun; 14(3):290-5. PubMed ID: 21377404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review.
    Rai KK; Pandey N; Meena RP; Rai SP
    Ecotoxicol Environ Saf; 2021 Jan; 208():111750. PubMed ID: 33396075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance.
    Sita K; Sehgal A; HanumanthaRao B; Nair RM; Vara Prasad PV; Kumar S; Gaur PM; Farooq M; Siddique KHM; Varshney RK; Nayyar H
    Front Plant Sci; 2017; 8():1658. PubMed ID: 29123532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant growth-regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops.
    Sharma L; Priya M; Kaushal N; Bhandhari K; Chaudhary S; Dhankher OP; Prasad PVV; Siddique KHM; Nayyar H
    J Exp Bot; 2020 Jan; 71(2):569-594. PubMed ID: 31328236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.