BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28011824)

  • 1. The Lombard effect emerges early in young bats: implications for the development of audio-vocal integration.
    Luo J; Lingner A; Firzlaff U; Wiegrebe L
    J Exp Biol; 2017 Mar; 220(Pt 6):1032-1037. PubMed ID: 28011824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats.
    Tressler J; Smotherman MS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Oct; 195(10):923-34. PubMed ID: 19672604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bats increase vocal amplitude and decrease vocal complexity to mitigate noise interference during social communication.
    Jiang T; Guo X; Lin A; Wu H; Sun C; Feng J; Kanwal JS
    Anim Cogn; 2019 Mar; 22(2):199-212. PubMed ID: 30631993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensorimotor integration on a rapid time scale.
    Luo J; Kothari NB; Moss CF
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6605-6610. PubMed ID: 28584095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise.
    Luo J; Goerlitz HR; Brumm H; Wiegrebe L
    Sci Rep; 2015 Dec; 5():18556. PubMed ID: 26692325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats.
    Hage SR; Jiang T; Berquist SW; Feng J; Metzner W
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):4063-8. PubMed ID: 23431172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superfast Lombard response in free-flying, echolocating bats.
    Pedersen MB; Egenhardt M; Beedholm K; Skalshøi MR; Uebel AS; Hubancheva A; Koseva K; Moss CF; Luo J; Stidsholt L; Madsen PT
    Curr Biol; 2024 Jun; 34(11):2509-2516.e3. PubMed ID: 38744283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Echo feedback mediates noise-induced vocal modifications in flying bats.
    Luo J; Lu M; Luo J; Moss CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):203-214. PubMed ID: 36266485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambient noise causes independent changes in distinct spectro-temporal features of echolocation calls in horseshoe bats.
    Hage SR; Jiang T; Berquist SW; Feng J; Metzner W
    J Exp Biol; 2014 Jul; 217(Pt 14):2440-4. PubMed ID: 24855671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Echolocating bats exhibit differential amplitude compensation for noise interference at a sub-call level.
    Lu M; Zhang G; Luo J
    J Exp Biol; 2020 Oct; 223(Pt 19):. PubMed ID: 32843365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical control of vocal plasticity in an echolocating bat.
    Luo J; Wiegrebe L
    J Exp Biol; 2016 Mar; 219(Pt 6):878-86. PubMed ID: 26823102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An audio-vocal interface in echolocating horseshoe bats.
    Metzner W
    J Neurosci; 1993 May; 13(5):1899-915. PubMed ID: 8478683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.
    Amichai E; Blumrosen G; Yovel Y
    Proc Biol Sci; 2015 Dec; 282(1821):20152064. PubMed ID: 26702045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term and persistent vocal plasticity in adult bats.
    Genzel D; Desai J; Paras E; Yartsev MM
    Nat Commun; 2019 Jul; 10(1):3372. PubMed ID: 31358755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.
    Metzner W; Zhang S; Smotherman M
    J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bats adjust temporal parameters of echolocation pulses but not those of communication calls in response to traffic noise.
    Song S; Lin A; Jiang T; Zhao X; Metzner W; Feng J
    Integr Zool; 2019 Nov; 14(6):576-588. PubMed ID: 30811841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential effects of anthropogenic noise on echolocation behavior in horseshoe bats.
    Hage SR; Metzner W
    Commun Integr Biol; 2013 Jul; 6(4):e24753. PubMed ID: 23986811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Lombard effect and other noise-induced vocal modifications: insight from mammalian communication systems.
    Hotchkin C; Parks S
    Biol Rev Camb Philos Soc; 2013 Nov; 88(4):809-24. PubMed ID: 23442026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible control of vocal timing in Carollia perspicillata bats enables escape from acoustic interference.
    Kiai A; Clemens J; Kössl M; Poeppel D; Hechavarría J
    Commun Biol; 2023 Nov; 6(1):1153. PubMed ID: 37957351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Echolocating Daubenton's bats are resilient to broadband, ultrasonic masking noise during active target approaches.
    Foskolos I; Bjerre Pedersen M; Beedholm K; Uebel AS; Macaulay J; Stidsholt L; Brinkløv S; Madsen PT
    J Exp Biol; 2022 Feb; 225(3):. PubMed ID: 35037031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.