These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28011824)

  • 41. Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor.
    Fenzl T; Schuller G
    BMC Biol; 2005 Aug; 3():17. PubMed ID: 16053533
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The vocal development of the pale spear-nosed bat is dependent on auditory feedback.
    Lattenkamp EZ; Linnenschmidt M; Mardus E; Vernes SC; Wiegrebe L; Schutte M
    Philos Trans R Soc Lond B Biol Sci; 2021 Oct; 376(1836):20200253. PubMed ID: 34482731
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bats distress vocalizations carry fast amplitude modulations that could represent an acoustic correlate of roughness.
    Hechavarría JC; Jerome Beetz M; García-Rosales F; Kössl M
    Sci Rep; 2020 Apr; 10(1):7332. PubMed ID: 32355293
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mouth gape angle has little effect on the transmitted signals of big brown bats (Eptesicus fuscus).
    Kloepper LN; Gaudette JE; Simmons JA; Buck JR
    J Acoust Soc Am; 2014 Oct; 136(4):1964-71. PubMed ID: 25324095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bats expand their vocal range by recruiting different laryngeal structures for echolocation and social communication.
    Håkansson J; Mikkelsen C; Jakobsen L; Elemans CPH
    PLoS Biol; 2022 Nov; 20(11):e3001881. PubMed ID: 36445872
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of echolocation and communication vocalizations in the big brown bat, Eptesicus fuscus.
    Monroy JA; Carter ME; Miller KE; Covey E
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):459-67. PubMed ID: 21327335
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recording animal vocalizations from a UAV: bat echolocation during roost re-entry.
    Kloepper LN; Kinniry M
    Sci Rep; 2018 May; 8(1):7779. PubMed ID: 29773821
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vocal learning by greater spear-nosed bats.
    Boughman JW
    Proc Biol Sci; 1998 Feb; 265(1392):227-33. PubMed ID: 9493408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Echolocation-related reversal of information flow in a cortical vocalization network.
    García-Rosales F; López-Jury L; González-Palomares E; Wetekam J; Cabral-Calderín Y; Kiai A; Kössl M; Hechavarría JC
    Nat Commun; 2022 Jun; 13(1):3642. PubMed ID: 35752629
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Post-natal development of the envelope following response to amplitude modulated sounds in the bat Phyllostomus discolor.
    Hörpel SG; Firzlaff U
    Hear Res; 2020 Mar; 388():107904. PubMed ID: 32028065
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of background noise on acoustic characteristics of Bengalese finch songs.
    Shiba S; Okanoya K; Tachibana RO
    J Acoust Soc Am; 2016 Dec; 140(6):4039. PubMed ID: 28040000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Lombard Effect: From Acoustics to Neural Mechanisms.
    Luo J; Hage SR; Moss CF
    Trends Neurosci; 2018 Dec; 41(12):938-949. PubMed ID: 30115413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Auditory sensitivity and frequency selectivity in greater spear-nosed bats suggest specializations for acoustic communication.
    Bohn KM; Boughman JW; Wilkinson GS; Moss CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):185-92. PubMed ID: 14727133
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vocal production learning in bats.
    Knörnschild M
    Curr Opin Neurobiol; 2014 Oct; 28():80-5. PubMed ID: 25050812
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fast sensory-motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept.
    Geberl C; Brinkløv S; Wiegrebe L; Surlykke A
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4122-7. PubMed ID: 25775538
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of high duty cycle echolocation in bats.
    Fenton MB; Faure PA; Ratcliffe JM
    J Exp Biol; 2012 Sep; 215(Pt 17):2935-44. PubMed ID: 22875762
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vocal communication in the pallid bat, Antrozous pallidus.
    Brown P
    Z Tierpsychol; 1976 May; 41(1):34-54. PubMed ID: 961121
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The second harmonic neurons in auditory midbrain of Hipposideros pratti are more tolerant to background white noise.
    Cui Z; Zhang G; Zhou D; Wu J; Liu L; Tang J; Chen Q; Fu Z
    Hear Res; 2021 Feb; 400():108142. PubMed ID: 33310564
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Active Listening in a Bat Cocktail Party: Adaptive Echolocation and Flight Behaviors of Big Brown Bats, Eptesicus fuscus, Foraging in a Cluttered Acoustic Environment.
    Warnecke M; Chiu C; Engelberg J; Moss CF
    Brain Behav Evol; 2015 Sep; 86(1):6-16. PubMed ID: 26398707
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus.
    Barber JR; Razak KA; Fuzessery ZM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Nov; 189(11):843-55. PubMed ID: 14564468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.