BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28012053)

  • 1. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean.
    Yin X; Hiraga S; Hajika M; Nishimura M; Komatsu S
    Plant Mol Biol; 2017 Mar; 93(4-5):479-496. PubMed ID: 28012053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean.
    Yin X; Nishimura M; Hajika M; Komatsu S
    J Proteome Res; 2016 Jun; 15(6):2008-25. PubMed ID: 27132649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.
    Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P
    J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress.
    Wang X; Zhu W; Hashiguchi A; Nishimura M; Tian J; Komatsu S
    Plant Mol Biol; 2017 Aug; 94(6):669-685. PubMed ID: 28733872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.
    Mutava RN; Prince SJK; Syed NH; Song L; Valliyodan B; Chen W; Nguyen HT
    Plant Physiol Biochem; 2015 Jan; 86():109-120. PubMed ID: 25438143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.
    Khan MN; Sakata K; Hiraga S; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.
    Ogata T; Nagatoshi Y; Yamagishi N; Yoshikawa N; Fujita Y
    PLoS One; 2017; 12(4):e0175650. PubMed ID: 28419130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.
    Komatsu S; Nanjo Y; Nishimura M
    J Proteomics; 2013 Feb; 79():231-50. PubMed ID: 23313221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress.
    Yin X; Komatsu S
    J Proteomics; 2017 Oct; 169():225-232. PubMed ID: 28137666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrated Approach of Proteomics and Computational Genetic Modification Effectiveness Analysis to Uncover the Mechanisms of Flood Tolerance in Soybeans.
    Wang X; Sakata K; Komatsu S
    Int J Mol Sci; 2018 Apr; 19(5):. PubMed ID: 29701710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.
    Khatoon A; Rehman S; Hiraga S; Makino T; Komatsu S
    J Proteomics; 2012 Oct; 75(18):5706-23. PubMed ID: 22850269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress.
    Wang X; Li F; Chen Z; Yang B; Komatsu S; Zhou S
    J Proteomics; 2021 Feb; 232():104064. PubMed ID: 33276190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean.
    Syed NH; Prince SJ; Mutava RN; Patil G; Li S; Chen W; Babu V; Joshi T; Khan S; Nguyen HT
    J Exp Bot; 2015 Dec; 66(22):7129-49. PubMed ID: 26314767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the
    Song L; Valliyodan B; Prince S; Wan J; Nguyen HT
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases.
    Guttikonda SK; Trupti J; Bisht NC; Chen H; An YQ; Pandey S; Xu D; Yu O
    BMC Plant Biol; 2010 Nov; 10():243. PubMed ID: 21062474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.
    Wang X; Oh M; Sakata K; Komatsu S
    J Proteomics; 2016 Jan; 130():42-55. PubMed ID: 26376099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overlapping and stress-specific transcriptomic and hormonal responses to flooding and drought in soybean.
    Tamang BG; Li S; Rajasundaram D; Lamichhane S; Fukao T
    Plant J; 2021 Jul; 107(1):100-117. PubMed ID: 33864651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response.
    Ghosh A; Islam T
    BMC Plant Biol; 2016 Apr; 16():87. PubMed ID: 27083416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots.
    Komatsu S; Deschamps T; Hiraga S; Kato M; Chiba M; Hashiguchi A; Tougou M; Shimamura S; Yasue H
    Plant Mol Biol; 2011 Oct; 77(3):309-22. PubMed ID: 21811849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.