These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
489 related articles for article (PubMed ID: 28012673)
1. Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings. Li LZ; Tu C; Peijnenburg WJGM; Luo YM Environ Pollut; 2017 Feb; 221():351-358. PubMed ID: 28012673 [TBL] [Abstract][Full Text] [Related]
2. Pathways of root uptake and membrane transport of Cd Li LZ; Tu C; Wu LH; Peijnenburg WJ; Ebbs S; Luo YM Environ Toxicol Chem; 2017 Apr; 36(4):1038-1046. PubMed ID: 27662630 [TBL] [Abstract][Full Text] [Related]
3. Silicate reduces cadmium uptake into cells of wheat. Greger M; Kabir AH; Landberg T; Maity PJ; Lindberg S Environ Pollut; 2016 Apr; 211():90-7. PubMed ID: 26745394 [TBL] [Abstract][Full Text] [Related]
4. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. Harris NS; Taylor GJ BMC Plant Biol; 2004 Apr; 4():4. PubMed ID: 15084224 [TBL] [Abstract][Full Text] [Related]
5. Zhu J; Zhao P; Nie Z; Shi H; Li C; Wang Y; Qin S; Qin X; Liu H BMC Plant Biol; 2020 Dec; 20(1):550. PubMed ID: 33287728 [TBL] [Abstract][Full Text] [Related]
6. Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity. Shi Z; Yang S; Han D; Zhou Z; Li X; Liu Y; Zhang B Environ Sci Pollut Res Int; 2018 Mar; 25(8):7638-7646. PubMed ID: 29285697 [TBL] [Abstract][Full Text] [Related]
7. Pathways of cadmium fluxes in the root of the hyperaccumulator Celosia argentea Linn. Jiang P; Zheng Y; Liu J; Yu G; Lin F Environ Sci Pollut Res Int; 2022 Jun; 29(29):44413-44421. PubMed ID: 35137315 [TBL] [Abstract][Full Text] [Related]
8. [Effect of Exogenous Chitosan on Physiological Properties, Antioxidant Activity, and Cadmium Uptake of Wheat ( Zhang JJ; Jiao QJ; Xu ZY; Fan LN; Jiang Y; Song J; Hua DL; Li GZ; Lin D; Liu HT Huan Jing Ke Xue; 2024 Jun; 45(6):3649-3660. PubMed ID: 38897784 [TBL] [Abstract][Full Text] [Related]
9. Cadmium uptake and membrane transport in roots of hyperaccumulator Amaranthus hypochondriacus L. Han M; Ullah H; Yang H; Yu G; You S; Liu J; Chen B; Shahab A; Antoniadis V; Shaheen SM; Rinklebe J Environ Pollut; 2023 Aug; 331(Pt 1):121846. PubMed ID: 37211225 [TBL] [Abstract][Full Text] [Related]
10. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Rizwan M; Meunier JD; Davidian JC; Pokrovsky OS; Bovet N; Keller C Environ Sci Pollut Res Int; 2016 Jan; 23(2):1414-27. PubMed ID: 26370813 [TBL] [Abstract][Full Text] [Related]
11. A comparative study of root cadmium radial transport in seedlings of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation. Liu Y; Lu M; Tao Q; Luo J; Li J; Guo X; Liang Y; Yang X; Li T Environ Pollut; 2020 Nov; 266(Pt 3):115235. PubMed ID: 32707356 [TBL] [Abstract][Full Text] [Related]
12. [Effects of soil HHCB and Cd contamination on the growth of wheat seedlings (Triticum aestivum) and the pollutants accumulation in plants]. Chen CH; Zhou QX; Zhang ZN; Cai Z Huan Jing Ke Xue; 2011 Feb; 32(2):567-73. PubMed ID: 21528585 [TBL] [Abstract][Full Text] [Related]
13. Effects of soil polycyclic musk and cadmium on pollutant uptake and biochemical responses of wheat (Triticum aestivum). Chen CH; Zhou QX; Cai Z; Wang YY Arch Environ Contam Toxicol; 2010 Nov; 59(4):564-73. PubMed ID: 20396873 [TBL] [Abstract][Full Text] [Related]
14. Cadmium uptake and interaction with phytochelatins in wheat protoplasts. Lindberg S; Landberg T; Greger M Plant Physiol Biochem; 2007 Jan; 45(1):47-53. PubMed ID: 17303432 [TBL] [Abstract][Full Text] [Related]
15. Effects of nitrogen forms on Cd uptake and tolerance in wheat seedlings. Chen K; Xue W; Di X; Sun T; Gao W; Sun Y Sci Total Environ; 2024 Aug; 936():173451. PubMed ID: 38782266 [TBL] [Abstract][Full Text] [Related]
16. Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction. Shi GL; Lou LQ; Li DJ; Hu ZB; Cai QS Chemosphere; 2017 May; 175():192-199. PubMed ID: 28222373 [TBL] [Abstract][Full Text] [Related]
17. Effect of boron on cadmium uptake and expression of Cd transport genes at different growth stages of wheat (Triticum aestivum L.). Qin S; Xu Y; Nie Z; Liu H; Gao W; Li C; Wang L; Zhao P Ecotoxicol Environ Saf; 2022 Aug; 241():113834. PubMed ID: 36068760 [TBL] [Abstract][Full Text] [Related]
18. Ralstonia eutropha Q2-8 reduces wheat plant above-ground tissue cadmium and arsenic uptake and increases the expression of the plant root cell wall organization and biosynthesis-related proteins. Wang XH; Wang Q; Nie ZW; He LY; Sheng XF Environ Pollut; 2018 Nov; 242(Pt B):1488-1499. PubMed ID: 30144722 [TBL] [Abstract][Full Text] [Related]
19. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Hussain A; Ali S; Rizwan M; Zia Ur Rehman M; Javed MR; Imran M; Chatha SAS; Nazir R Environ Pollut; 2018 Nov; 242(Pt B):1518-1526. PubMed ID: 30144725 [TBL] [Abstract][Full Text] [Related]
20. Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots. Dandan L; Dongmei Z; Peng W; Nanyan W; Xiangdong Z Ecotoxicol Environ Saf; 2011 May; 74(4):874-81. PubMed ID: 21190733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]