BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 28012742)

  • 1. Minor snake venom proteins: Structure, function and potential applications.
    Boldrini-França J; Cologna CT; Pucca MB; Bordon KC; Amorim FG; Anjolette FA; Cordeiro FA; Wiezel GA; Cerni FA; Pinheiro-Junior EL; Shibao PY; Ferreira IG; de Oliveira IS; Cardoso IA; Arantes EC
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):824-838. PubMed ID: 28012742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snake Venom: From Deadly Toxins to Life-saving Therapeutics.
    Waheed H; Moin SF; Choudhary MI
    Curr Med Chem; 2017; 24(17):1874-1891. PubMed ID: 28578650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of the immune modulating effects of enzymatic toxins from snake venoms.
    Burin SM; Menaldo DL; Sampaio SV; Frantz FG; Castro FA
    Int J Biol Macromol; 2018 Apr; 109():664-671. PubMed ID: 29274419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snake Venom, A Natural Library of New Potential Therapeutic Molecules: Challenges and Current Perspectives.
    Simoes-Silva R; Alfonso J; Gomez A; Holanda RJ; Sobrinho JC; Zaqueo KD; Moreira-Dill LS; Kayano AM; Grabner FP; da Silva SL; Almeida JR; Stabeli RG; Zuliani JP; Soares AM
    Curr Pharm Biotechnol; 2018; 19(4):308-335. PubMed ID: 29929461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Snake venom derived molecules in tumor angiogenesis and its application in cancer therapy; an overview.
    Dhananjaya BL; Sivashankari PR
    Curr Top Med Chem; 2015; 15(7):649-57. PubMed ID: 25714377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution and structure of snake venom phosphodiesterase (svPDE) highlight its importance in venom actions.
    Pan CT; Lin CC; Lin IJ; Chien KY; Lin YS; Chang HH; Wu WG
    Elife; 2023 Apr; 12():. PubMed ID: 37067034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bothrops pauloensis snake venom toxins: the search for new therapeutic models.
    Rodrigues VM; Lopes DS; Castanheira LE; Gimenes SN; Naves de Souza DL; Ache DC; Borges IP; Yoneyama KA; Rodrigues RS
    Curr Top Med Chem; 2015; 15(7):670-84. PubMed ID: 25686731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Profile Analysis of Two Australian Snake Venoms by One- Dimensional Gel Electrophoresis and MS/MS Experiments.
    Georgieva D; Hildebrand D; Simas R; Coronado MA; Kwiatkowski M; Schlüter H; Arni R; Spencer P; Betzel C
    Curr Med Chem; 2017; 24(17):1892-1908. PubMed ID: 28571558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticoagulant proteins from snake venoms: structure, function and mechanism.
    Kini RM
    Biochem J; 2006 Aug; 397(3):377-87. PubMed ID: 16831131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome analysis of snake venom toxins: pharmacological insights.
    Georgieva D; Arni RK; Betzel C
    Expert Rev Proteomics; 2008 Dec; 5(6):787-97. PubMed ID: 19086859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snake venom toxins: toxicity and medicinal applications.
    Chan YS; Cheung RCF; Xia L; Wong JH; Ng TB; Chan WY
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6165-6181. PubMed ID: 27245678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.
    Thakur R; Mukherjee AK
    Toxicon; 2017 Jun; 131():37-47. PubMed ID: 28288936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snake venom components affecting blood coagulation and the vascular system: structural similarities and marked diversity.
    Yamazaki Y; Morita T
    Curr Pharm Des; 2007; 13(28):2872-86. PubMed ID: 17979732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases.
    Kini RM; Koh CY
    Biochem Pharmacol; 2020 Nov; 181():114105. PubMed ID: 32579959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood cells as targets of snake toxins.
    Du XY; Sim DS; Lee WH; Zhang Y
    Blood Cells Mol Dis; 2006; 36(3):414-21. PubMed ID: 16631395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Snake Venom Peptides and Low Mass Proteins: Molecular Tools and Therapeutic Agents.
    Almeida JR; Resende LM; Watanabe RK; Carregari VC; Huancahuire-Vega S; da S Caldeira CA; Coutinho-Neto A; Soares AM; Vale N; de C Gomes PA; Marangoni S; de A Calderon L; Da Silva SL
    Curr Med Chem; 2017; 24(30):3254-3282. PubMed ID: 27804880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging anticancer potential and mechanisms of snake venom toxins: A review.
    Guo X; Fu Y; Peng J; Fu Y; Dong S; Ding RB; Qi X; Bao J
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131990. PubMed ID: 38704067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases.
    Fox JW
    Toxicon; 2013 Feb; 62():75-82. PubMed ID: 23010165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.
    Brahma RK; McCleary RJ; Kini RM; Doley R
    Toxicon; 2015 Jan; 93():1-10. PubMed ID: 25448392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Venom of the Spine-Bellied Sea Snake (Hydrophis curtus): Proteome, Toxin Diversity and Intraspecific Variation.
    Neale V; Sotillo J; Seymour JE; Wilson D
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29231898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.