These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 28012891)
41. Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP+ -induced neurodegeneration. Cartelli D; Ronchi C; Maggioni MG; Rodighiero S; Giavini E; Cappelletti G J Neurochem; 2010 Oct; 115(1):247-58. PubMed ID: 20649848 [TBL] [Abstract][Full Text] [Related]
42. The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Benitez-King G; Ramírez-Rodríguez G; Ortíz L; Meza I Curr Drug Targets CNS Neurol Disord; 2004 Dec; 3(6):515-33. PubMed ID: 15581421 [TBL] [Abstract][Full Text] [Related]
43. The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson's disease. Esteves AR; Gozes I; Cardoso SM Biochim Biophys Acta; 2014 Jan; 1842(1):7-21. PubMed ID: 24120997 [TBL] [Abstract][Full Text] [Related]
44. Microtubule-targeting agents and neurodegeneration. Boiarska Z; Passarella D Drug Discov Today; 2021 Feb; 26(2):604-615. PubMed ID: 33279455 [TBL] [Abstract][Full Text] [Related]
45. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Zhang B; Maiti A; Shively S; Lakhani F; McDonald-Jones G; Bruce J; Lee EB; Xie SX; Joyce S; Li C; Toleikis PM; Lee VM; Trojanowski JQ Proc Natl Acad Sci U S A; 2005 Jan; 102(1):227-31. PubMed ID: 15615853 [TBL] [Abstract][Full Text] [Related]
46. Microtubule Targeting Agents as Cancer Chemotherapeutics: An Overview of Molecular Hybrids as Stabilizing and Destabilizing Agents. Tangutur AD; Kumar D; Krishna KV; Kantevari S Curr Top Med Chem; 2017; 17(22):2523-2537. PubMed ID: 28056738 [TBL] [Abstract][Full Text] [Related]
47. Cytoplasmic dynein: a key player in neurodegenerative and neurodevelopmental diseases. Chen XJ; Xu H; Cooper HM; Liu Y Sci China Life Sci; 2014 Apr; 57(4):372-7. PubMed ID: 24664850 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy. Makani V; Zhang B; Han H; Yao Y; Lassalas P; Lou K; Paterson I; Lee VM; Trojanowski JQ; Ballatore C; Smith AB; Brunden KR Acta Neuropathol Commun; 2016 Sep; 4(1):106. PubMed ID: 27687527 [TBL] [Abstract][Full Text] [Related]
49. Structural comparison of the interaction of tubulin with various ligands affecting microtubule dynamics. Stec-Martyna E; Ponassi M; Miele M; Parodi S; Felli L; Rosano C Curr Cancer Drug Targets; 2012 Jul; 12(6):658-66. PubMed ID: 22385515 [TBL] [Abstract][Full Text] [Related]
50. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones. Biswas S; Kalil K J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405 [TBL] [Abstract][Full Text] [Related]
51. Regulation of Microtubule: Current Concepts and Relevance to Neurodegenerative Diseases. Ghosh A; Singh S CNS Neurol Disord Drug Targets; 2022; 21(8):656-679. PubMed ID: 34323203 [TBL] [Abstract][Full Text] [Related]
52. Microtubule Organization Determines Axonal Transport Dynamics. Yogev S; Cooper R; Fetter R; Horowitz M; Shen K Neuron; 2016 Oct; 92(2):449-460. PubMed ID: 27764672 [TBL] [Abstract][Full Text] [Related]
53. Microtubule Dynamicity Is More Important than Stability in Memory Formation: an In Vivo Study. Atarod D; Eskandari-Sedighi G; Pazhoohi F; Karimian SM; Khajeloo M; Riazi GH J Mol Neurosci; 2015 Jun; 56(2):313-9. PubMed ID: 25740015 [TBL] [Abstract][Full Text] [Related]
54. Microtubule Dynamics Following Central and Peripheral Nervous System Axotomy. Kulkarni R; Thakur A; Kumar H ACS Chem Neurosci; 2022 May; 13(9):1358-1369. PubMed ID: 35451811 [TBL] [Abstract][Full Text] [Related]
55. Regulation of Axonal Transport by Protein Kinases. Gibbs KL; Greensmith L; Schiavo G Trends Biochem Sci; 2015 Oct; 40(10):597-610. PubMed ID: 26410600 [TBL] [Abstract][Full Text] [Related]
56. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Chinen T; Liu P; Shioda S; Pagel J; Cerikan B; Lin TC; Gruss O; Hayashi Y; Takeno H; Shima T; Okada Y; Hayakawa I; Hayashi Y; Kigoshi H; Usui T; Schiebel E Nat Commun; 2015 Oct; 6():8722. PubMed ID: 26503935 [TBL] [Abstract][Full Text] [Related]
57. Axonal transport and neurodegenerative disease. Chevalier-Larsen E; Holzbaur EL Biochim Biophys Acta; 2006; 1762(11-12):1094-108. PubMed ID: 16730956 [TBL] [Abstract][Full Text] [Related]
58. Releasing the brake: restoring fast axonal transport in neurodegenerative disorders. Hinckelmann MV; Zala D; Saudou F Trends Cell Biol; 2013 Dec; 23(12):634-43. PubMed ID: 24091156 [TBL] [Abstract][Full Text] [Related]
59. Common mechanisms underlying axonal transport deficits in neurodegenerative diseases: a mini review. Yang X; Ma Z; Lian P; Xu Y; Cao X Front Mol Neurosci; 2023; 16():1172197. PubMed ID: 37168679 [TBL] [Abstract][Full Text] [Related]
60. Acetylation as a major determinant to microtubule-dependent autophagy: Relevance to Alzheimer's and Parkinson disease pathology. Esteves AR; Palma AM; Gomes R; Santos D; Silva DF; Cardoso SM Biochim Biophys Acta Mol Basis Dis; 2019 Aug; 1865(8):2008-2023. PubMed ID: 30572013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]