These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28013005)

  • 1. Effects of β-sheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk.
    Park J; Kim D; Lee SM; Choi JU; You M; So HM; Han J; Nah J; Seol JH
    Int J Biol Macromol; 2017 Mar; 96():384-391. PubMed ID: 28013005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein.
    Zhang L; Chen T; Ban H; Liu L
    Nanoscale; 2014 Jul; 6(14):7786-91. PubMed ID: 24811747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice deformation and thermal stability of crystals in spider silk.
    Sheu HS; Phyu KW; Jean YC; Chiang YP; Tso IM; Wu HC; Yang JC; Ferng SL
    Int J Biol Macromol; 2004 Oct; 34(5):325-31. PubMed ID: 15556235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stress on the molecular structure and mechanical properties of supercontracted spider dragline silks.
    Dong Q; Fang G; Huang Y; Hu L; Yao J; Shao Z; Ling S; Chen X
    J Mater Chem B; 2020 Jan; 8(1):168-176. PubMed ID: 31789330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.
    Shi X; Holland GP; Yarger JL
    Biomacromolecules; 2015 Mar; 16(3):852-9. PubMed ID: 25619304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of superior spider silk: from nanostructure to mechanical properties.
    Du N; Liu XY; Narayanan J; Li L; Lim ML; Li D
    Biophys J; 2006 Dec; 91(12):4528-35. PubMed ID: 16950851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New secrets of spider silk: exceptionally high thermal conductivity and its abnormal change under stretching.
    Huang X; Liu G; Wang X
    Adv Mater; 2012 Mar; 24(11):1482-6. PubMed ID: 22388863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the fraction of glycine and alanine in beta-sheet and helical conformations in spider dragline silk using solid-state NMR.
    Holland GP; Jenkins JE; Creager MS; Lewis RV; Yarger JL
    Chem Commun (Camb); 2008 Nov; (43):5568-70. PubMed ID: 18997954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk.
    Holland GP; Lewis RV; Yarger JL
    J Am Chem Soc; 2004 May; 126(18):5867-72. PubMed ID: 15125679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing conformational changes for patterning thin films of recombinant spider silk proteins.
    Young SL; Gupta M; Hanske C; Fery A; Scheibel T; Tsukruk VV
    Biomacromolecules; 2012 Oct; 13(10):3189-99. PubMed ID: 22947370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the amino acid sequence on thermal conduction through β-sheet crystals of natural silk protein.
    Zhang L; Bai Z; Ban H; Liu L
    Phys Chem Chem Phys; 2015 Nov; 17(43):29007-13. PubMed ID: 26455593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation and dynamics of soluble repetitive domain elucidates the initial β-sheet formation of spider silk.
    Oktaviani NA; Matsugami A; Malay AD; Hayashi F; Kaplan DL; Numata K
    Nat Commun; 2018 May; 9(1):2121. PubMed ID: 29844575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular structure of spider dragline silk: folding and orientation of the protein backbone.
    van Beek JD; Hess S; Vollrath F; Meier BH
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10266-71. PubMed ID: 12149440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled semi-crystallinity at parallel β-sheet nanocrystal interfaces in clustered MaSp1 (spider silk) proteins.
    Sintya E; Alam P
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():366-71. PubMed ID: 26478322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction.
    Xu D; Shi X; Thompson F; Weber WS; Mou Q; Yarger JL
    Int J Biol Macromol; 2015 Nov; 81():171-9. PubMed ID: 26226457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant wood spider Nephila pilipes alters silk protein in response to prey variation.
    Tso IM; Wu HC; Hwang IR
    J Exp Biol; 2005 Mar; 208(Pt 6):1053-61. PubMed ID: 15767307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental confirmation of thermal transitions in native and regenerated spider silks.
    Torres FG; Troncoso OP; Torres C; Cabrejos W
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1432-7. PubMed ID: 23827592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion effects on the conformation and dynamics of repetitive domains of a spider silk protein: implications for solubility and β-sheet formation.
    Oktaviani NA; Matsugami A; Hayashi F; Numata K
    Chem Commun (Camb); 2019 Aug; 55(66):9761-9764. PubMed ID: 31355386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils.
    Nova A; Keten S; Pugno NM; Redaelli A; Buehler MJ
    Nano Lett; 2010 Jul; 10(7):2626-34. PubMed ID: 20518518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.