BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28013275)

  • 1. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.
    Ooeda H; Terashima I; Taneda H
    Plant Cell Physiol; 2017 Feb; 58(2):354-364. PubMed ID: 28013275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra-specific trends of lumen and wall resistivities of vessels within the stem xylem vary among three woody plants.
    Ooeda H; Terashima I; Taneda H
    Tree Physiol; 2018 Feb; 38(2):223-231. PubMed ID: 29036681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.
    Rolland V; Bergstrom DM; Lenné T; Bryant G; Chen H; Wolfe J; Holbrook NM; Stanton DE; Ball MC
    Plant Physiol; 2015 Aug; 168(4):1636-47. PubMed ID: 26091819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Visualization of the Dynamics in Xylem Embolism Formation and Removal in the Absence of Root Pressure: A Study on Excised Grapevine Stems.
    Knipfer T; Cuneo IF; Brodersen CR; McElrone AJ
    Plant Physiol; 2016 Jun; 171(2):1024-36. PubMed ID: 27208267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi bay, Kenya.
    Schmitz N; Jansen S; Verheyden A; Kairo JG; Beeckman H; Koedam N
    Ann Bot; 2007 Aug; 100(2):271-81. PubMed ID: 17565970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species.
    Christman MA; Sperry JS; Smith DD
    New Phytol; 2012 Feb; 193(3):713-720. PubMed ID: 22150784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms.
    Kaack L; Weber M; Isasa E; Karimi Z; Li S; Pereira L; Trabi CL; Zhang Y; Schenk HJ; Schuldt B; Schmidt V; Jansen S
    New Phytol; 2021 Jun; 230(5):1829-1843. PubMed ID: 33595117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens.
    Trifilò P; Barbera PM; Raimondo F; Nardini A; Lo Gullo MA
    Tree Physiol; 2014 Feb; 34(2):109-22. PubMed ID: 24488800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of bubble growth leading to xylem conduit embolism.
    Hölttä T; Vesala T; Nikinmaa E
    J Theor Biol; 2007 Nov; 249(1):111-23. PubMed ID: 17706683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo visualization of the final stages of xylem vessel refilling in grapevine (Vitis vinifera) stems.
    Brodersen CR; Knipfer T; McElrone AJ
    New Phytol; 2018 Jan; 217(1):117-126. PubMed ID: 28940305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of water stress-induced xylem embolism.
    Sperry JS; Tyree MT
    Plant Physiol; 1988 Nov; 88(3):581-7. PubMed ID: 16666352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the 'rare pit' hypothesis for xylem cavitation resistance in three species of Acer.
    Christman MA; Sperry JS; Adler FR
    New Phytol; 2009; 182(3):664-674. PubMed ID: 19434805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms.
    Tixier A; Herbette S; Jansen S; Capron M; Tordjeman P; Cochard H; Badel E
    Ann Bot; 2014 Aug; 114(2):325-34. PubMed ID: 24918205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous distribution of pectin epitopes and calcium in different pit types of four angiosperm species.
    Plavcová L; Hacke UG
    New Phytol; 2011 Dec; 192(4):885-897. PubMed ID: 21801182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species.
    Scholz A; Rabaey D; Stein A; Cochard H; Smets E; Jansen S
    Tree Physiol; 2013 Jul; 33(7):684-94. PubMed ID: 23933827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pit membrane structure is highly variable and accounts for a major resistance to water flow through tracheid pits in stems and roots of two boreal conifer species.
    Schulte PJ; Hacke UG; Schoonmaker AL
    New Phytol; 2015 Oct; 208(1):102-13. PubMed ID: 25944400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?
    Jansen S; Gortan E; Lens F; Lo Gullo MA; Salleo S; Scholz A; Stein A; Trifilò P; Nardini A
    New Phytol; 2011 Jan; 189(1):218-28. PubMed ID: 20840611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cutting stems before relaxing xylem tension induces artefacts in Vitis coignetiae, as evidenced by magnetic resonance imaging.
    Ogasa MY; Utsumi Y; Miki NH; Yazaki K; Fukuda K
    Plant Cell Environ; 2016 Feb; 39(2):329-37. PubMed ID: 26234764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures.
    Ogasa M; Miki N; Yoshikawa K
    Tree Physiol; 2010 May; 30(5):608-17. PubMed ID: 20368339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vulnerability of xylem vessels to cavitation in sugar maple. Scaling from individual vessels to whole branches.
    Melcher PJ; Zwieniecki MA; Holbrook NM
    Plant Physiol; 2003 Apr; 131(4):1775-80. PubMed ID: 12692336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.