These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28013505)

  • 1. Using Confocal Microscopy and Computational Modeling to Investigate the Cell-Penetrating Properties of Antimicrobial Peptides.
    Del Rio G; Klipp E; Herrmann A
    Methods Mol Biol; 2017; 1548():191-199. PubMed ID: 28013505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine antimicrobial peptide tachyplesin as an efficient nanocarrier for macromolecule delivery in plant and mammalian cells.
    Jain A; Yadav BK; Chugh A
    FEBS J; 2015 Feb; 282(4):732-45. PubMed ID: 25514997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane interacting peptides: from killers to helpers.
    Dufourc EJ; Buchoux S; Toupé J; Sani MA; Jean-François F; Khemtémourian L; Grélard A; Loudet-Courrèges C; Laguerre M; Elezgaray J; Desbat B; Odaert B
    Curr Protein Pept Sci; 2012 Nov; 13(7):620-31. PubMed ID: 23116443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Antimicrobial and Antiviral Applications of Cell-Penetrating Peptides.
    Pärn K; Eriste E; Langel Ü
    Methods Mol Biol; 2015; 1324():223-45. PubMed ID: 26202273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant antimicrobial peptides.
    Nawrot R; Barylski J; Nowicki G; Broniarczyk J; Buchwald W; Goździcka-Józefiak A
    Folia Microbiol (Praha); 2014 May; 59(3):181-96. PubMed ID: 24092498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding and crossing: Methods for the characterization of membrane-active peptides interactions with membranes at the molecular level.
    Sachon E; Walrant A; Sagan S; Cribier S; Rodriguez N
    Arch Biochem Biophys; 2021 Mar; 699():108751. PubMed ID: 33421380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thin line between cell-penetrating and antimicrobial peptides: the case of Pep-1 and Pep-1-K.
    Bobone S; Piazzon A; Orioni B; Pedersen JZ; Nan YH; Hahm KS; Shin SY; Stella L
    J Pept Sci; 2011 May; 17(5):335-41. PubMed ID: 21294230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptides with cell-penetrating peptide properties and vice versa.
    Splith K; Neundorf I
    Eur Biophys J; 2011 Apr; 40(4):387-97. PubMed ID: 21336522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties.
    Neundorf I
    Adv Exp Med Biol; 2019; 1117():93-109. PubMed ID: 30980355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antimicrobial activity of Sub3 is dependent on membrane binding and cell-penetrating ability.
    Torcato IM; Huang YH; Franquelim HG; Gaspar DD; Craik DJ; Castanho MA; Henriques ST
    Chembiochem; 2013 Oct; 14(15):2013-22. PubMed ID: 24038773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical properties of membrane-active peptides based on micelle modeling: a case study of cell-penetrating and antimicrobial peptides.
    Wang Q; Hong G; Johnson GR; Pachter R; Cheung MS
    J Phys Chem B; 2010 Nov; 114(43):13726-35. PubMed ID: 20939546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-penetrating antimicrobial peptides - prospectives for targeting intracellular infections.
    Bahnsen JS; Franzyk H; Sayers EJ; Jones AT; Nielsen HM
    Pharm Res; 2015 May; 32(5):1546-56. PubMed ID: 25777610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in computational modeling of α-helical membrane-active peptides.
    Polyansky AA; Chugunov AO; Vassilevski AA; Grishin EV; Efremov RG
    Curr Protein Pept Sci; 2012 Nov; 13(7):644-57. PubMed ID: 23363529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a possible uptake mechanism of selective antibacterial peptides.
    Polanco C; Samaniego JL; Castañón-González JA; Buhse T; Sordo ML
    Acta Biochim Pol; 2013; 60(4):629-33. PubMed ID: 24432312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.
    Arasteh S; Bagheri M
    Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR.
    Su Y; Li S; Hong M
    Amino Acids; 2013 Mar; 44(3):821-33. PubMed ID: 23108593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells.
    Papo N; Shai Y
    Biochemistry; 2003 Aug; 42(31):9346-54. PubMed ID: 12899621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations.
    Melo MN; Ferre R; Castanho MA
    Nat Rev Microbiol; 2009 Mar; 7(3):245-50. PubMed ID: 19219054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial Peptides: An Introduction.
    Haney EF; Mansour SC; Hancock RE
    Methods Mol Biol; 2017; 1548():3-22. PubMed ID: 28013493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane Active Peptides and Their Biophysical Characterization.
    Avci FG; Akbulut BS; Ozkirimli E
    Biomolecules; 2018 Aug; 8(3):. PubMed ID: 30135402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.