These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 28013507)
1. Protocols for Studying the Interaction of MSI-78 with the Membranes of Whole Gram-Positive and Gram-Negative Bacteria by NMR. Santisteban NP; Morrow MR; Booth V Methods Mol Biol; 2017; 1548():217-230. PubMed ID: 28013507 [TBL] [Abstract][Full Text] [Related]
2. Effect of AMPs MSI-78 and BP100 on the lipid acyl chains of Santisteban NP; Morrow MR; Booth V Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183199. PubMed ID: 31987866 [TBL] [Abstract][Full Text] [Related]
3. ²H solid-state nuclear magnetic resonance investigation of whole Escherichia coli interacting with antimicrobial peptide MSI-78. Pius J; Morrow MR; Booth V Biochemistry; 2012 Jan; 51(1):118-25. PubMed ID: 22126434 [TBL] [Abstract][Full Text] [Related]
4. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by Laadhari M; Arnold AA; Gravel AE; Separovic F; Marcotte I Biochim Biophys Acta; 2016 Dec; 1858(12):2959-2964. PubMed ID: 27639521 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR. Kumari S; Booth V Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269882 [TBL] [Abstract][Full Text] [Related]
6. Recent progress on the application of Booth V; Warschawski DE; Santisteban NP; Laadhari M; Marcotte I Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1500-1511. PubMed ID: 28844739 [TBL] [Abstract][Full Text] [Related]
7. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Su Y; Waring AJ; Ruchala P; Hong M Biochemistry; 2011 Mar; 50(12):2072-83. PubMed ID: 21302955 [TBL] [Abstract][Full Text] [Related]
8. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694 [TBL] [Abstract][Full Text] [Related]
9. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Schmitt P; Rosa RD; Destoumieux-Garzón D Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397 [TBL] [Abstract][Full Text] [Related]
10. Preparation of Membrane Models of Gram-Negative Bacteria and Their Interaction with Antimicrobial Peptides Studied by CD and NMR. Hicks R Methods Mol Biol; 2017; 1548():231-245. PubMed ID: 28013508 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes. Amos ST; Vermeer LS; Ferguson PM; Kozlowska J; Davy M; Bui TT; Drake AF; Lorenz CD; Mason AJ Sci Rep; 2016 Nov; 6():37639. PubMed ID: 27874065 [TBL] [Abstract][Full Text] [Related]
12. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322 [TBL] [Abstract][Full Text] [Related]
13. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
15. Structural basis of a temporin 1b analogue antimicrobial activity against Gram negative bacteria determined by CD and NMR techniques in cellular environment. Malgieri G; Avitabile C; Palmieri M; D'Andrea LD; Isernia C; Romanelli A; Fattorusso R ACS Chem Biol; 2015 Apr; 10(4):965-9. PubMed ID: 25622128 [TBL] [Abstract][Full Text] [Related]
16. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions. Bhattacharjya S Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110 [TBL] [Abstract][Full Text] [Related]
17. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
18. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Lee DK; Bhunia A; Kotler SA; Ramamoorthy A Biochemistry; 2015 Mar; 54(10):1897-907. PubMed ID: 25715195 [TBL] [Abstract][Full Text] [Related]
19. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Nuri R; Shprung T; Shai Y Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126 [TBL] [Abstract][Full Text] [Related]
20. Molecular insights into the interactions of GF-17 with the gram-negative and gram-positive bacterial lipid bilayers. Jahangiri S; Jafari M; Arjomand M; Mehrnejad F J Cell Biochem; 2018 Nov; 119(11):9205-9216. PubMed ID: 30076752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]