BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28013508)

  • 1. Preparation of Membrane Models of Gram-Negative Bacteria and Their Interaction with Antimicrobial Peptides Studied by CD and NMR.
    Hicks R
    Methods Mol Biol; 2017; 1548():231-245. PubMed ID: 28013508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic investigations of the binding mechanisms between antimicrobial peptides and membrane models of Pseudomonas aeruginosa and Klebsiella pneumoniae.
    Chai H; Allen WE; Hicks RP
    Bioorg Med Chem; 2014 Aug; 22(15):4210-22. PubMed ID: 24931276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge and aggregation pattern govern the interaction of plasticins with LPS monolayers mimicking the external leaflet of the outer membrane of Gram-negative bacteria.
    Michel JP; Wang YX; Dé E; Fontaine P; Goldmann M; Rosilio V
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2967-79. PubMed ID: 26343162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of membrane targeting antibiotics.
    Epand RM; Walker C; Epand RF; Magarvey NA
    Biochim Biophys Acta; 2016 May; 1858(5):980-7. PubMed ID: 26514603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocols for Studying the Interaction of MSI-78 with the Membranes of Whole Gram-Positive and Gram-Negative Bacteria by NMR.
    Santisteban NP; Morrow MR; Booth V
    Methods Mol Biol; 2017; 1548():217-230. PubMed ID: 28013507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.
    Malanovic N; Lohner K
    Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Agents That Inhibit the Outer Membrane Assembly Machines of Gram-Negative Bacteria.
    Choi U; Lee CR
    J Microbiol Biotechnol; 2019 Jan; 29(1):1-10. PubMed ID: 29996592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions.
    Bhattacharjya S
    Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance.
    Su Y; Waring AJ; Ruchala P; Hong M
    Biochemistry; 2011 Mar; 50(12):2072-83. PubMed ID: 21302955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine deleted protegrin-1 (CDP-1): anti-bacterial activity, outer-membrane disruption and selectivity.
    Mohanram H; Bhattacharjya S
    Biochim Biophys Acta; 2014 Oct; 1840(10):3006-16. PubMed ID: 24997421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular recognition of lipopolysaccharide by the lantibiotic nisin.
    Lanne ABM; Goode A; Prattley C; Kumari D; Drasbek MR; Williams P; Conde-Álvarez R; Moriyón I; Bonev BB
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):83-92. PubMed ID: 30296414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of a temporin 1b analogue antimicrobial activity against Gram negative bacteria determined by CD and NMR techniques in cellular environment.
    Malgieri G; Avitabile C; Palmieri M; D'Andrea LD; Isernia C; Romanelli A; Fattorusso R
    ACS Chem Biol; 2015 Apr; 10(4):965-9. PubMed ID: 25622128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes.
    Amos ST; Vermeer LS; Ferguson PM; Kozlowska J; Davy M; Bui TT; Drake AF; Lorenz CD; Mason AJ
    Sci Rep; 2016 Nov; 6():37639. PubMed ID: 27874065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers.
    Zhang L; Scott MG; Yan H; Mayer LD; Hancock RE
    Biochemistry; 2000 Nov; 39(47):14504-14. PubMed ID: 11087404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell selectivity and interaction with model membranes of Val/Arg-rich peptides.
    Ma QQ; Shan AS; Dong N; Gu Y; Sun WY; Hu WN; Feng XJ
    J Pept Sci; 2011 Jul; 17(7):520-6. PubMed ID: 21425418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides.
    Papo N; Shai Y
    J Biol Chem; 2005 Mar; 280(11):10378-87. PubMed ID: 15632151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane selectivity by W-tagging of antimicrobial peptides.
    Schmidtchen A; Ringstad L; Kasetty G; Mizuno H; Rutland MW; Malmsten M
    Biochim Biophys Acta; 2011 Apr; 1808(4):1081-91. PubMed ID: 21192916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acylation of SC4 dodecapeptide increases bactericidal potency against Gram-positive bacteria, including drug-resistant strains.
    Lockwood NA; Haseman JR; Tirrell MV; Mayo KH
    Biochem J; 2004 Feb; 378(Pt 1):93-103. PubMed ID: 14609430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.