BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2801699)

  • 21. Response of ammonia metabolism to acute acidosis: insights from cultured renal epithelium.
    Tannen RL; Sahai A
    Am J Kidney Dis; 1989 Oct; 14(4):281-4. PubMed ID: 2801694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of acidosis on resting cytosolic and mitochondrial Ca2+ in mammalian myocardium.
    Gambassi G; Hansford RG; Sollott SJ; Hogue BA; Lakatta EG; Capogrossi MC
    J Gen Physiol; 1993 Sep; 102(3):575-97. PubMed ID: 8245824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of pH on the calcium metabolism of isolated rat kidney cells.
    Studer RK; Borle AB
    J Membr Biol; 1979 Aug; 48(4):325-41. PubMed ID: 40033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of pyruvate on ammonia metabolism by renal cortical mitochondria.
    Tannen RL; Kunin AS
    Kidney Int; 1982 Sep; 22(3):280-5. PubMed ID: 7176330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutamine transport by mitochondria isolated from normal and acidotic rats.
    Goldstein L
    Am J Physiol; 1975 Oct; 229(4):1027-33. PubMed ID: 1190314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Troglitazone induced cytosolic acidification via extracellular signal-response kinase activation and mitochondrial depolarization: complex I proton pumping regulates ammoniagenesis in proximal tubule-like LLC-PK1 cells.
    Oliver R; Friday E; Turturro F; Welbourne T
    Cell Physiol Biochem; 2008; 22(5-6):475-86. PubMed ID: 19088429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction and targeting of the glutamine transporter SN1 to the basolateral membranes of cortical kidney tubule cells during chronic metabolic acidosis suggest a role in pH regulation.
    Solbu TT; Boulland JL; Zahid W; Lyamouri Bredahl MK; Amiry-Moghaddam M; Storm-Mathisen J; Roberg BA; Chaudhry FA
    J Am Soc Nephrol; 2005 Apr; 16(4):869-77. PubMed ID: 15716335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats.
    Bento LM; Fagian MM; Vercesi AE; Gontijo JA
    Nephrol Dial Transplant; 2007 Oct; 22(10):2817-23. PubMed ID: 17556421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of 2-oxoglutarate dehydrogenase complex by inorganic phosphate, Mg(2+), and other effectors.
    Rodríguez-Zavala JS; Pardo JP; Moreno-Sánchez R
    Arch Biochem Biophys; 2000 Jul; 379(1):78-84. PubMed ID: 10864444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Allosteric regulation of renal alpha-ketoglutarate dehydrogenase.
    Tullson P; Goldstein L
    Contrib Nephrol; 1982; 31():122-6. PubMed ID: 7105744
    [No Abstract]   [Full Text] [Related]  

  • 31. Relation between mitochondrial calcium transport and control of energy metabolism.
    Hansford RG
    Rev Physiol Biochem Pharmacol; 1985; 102():1-72. PubMed ID: 2863864
    [No Abstract]   [Full Text] [Related]  

  • 32. Effect of pH and alpha-ketoglutarate on mitochondrial ammonia production.
    Schoolwerth AC; Strzelecki T; Lanoue KF; Hoover WJ
    Contrib Nephrol; 1982; 31():127-33. PubMed ID: 7105745
    [No Abstract]   [Full Text] [Related]  

  • 33. The regulation of renal ammoniagenesis in the rat by extracellular factors. III. Effects of various fuels on in vitro ammoniagenesis.
    Bagnasco SM; Gaydos DS; Risquez A; Preuss HG
    Metabolism; 1983 Sep; 32(9):900-5. PubMed ID: 6888270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition.
    Lawlis VB; Roche TE
    Biochemistry; 1981 Apr; 20(9):2519-24. PubMed ID: 6894547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hexose metabolism in pancreatic islets. Participation of Ca2(+)-sensitive 2-ketoglutarate dehydrogenase in the regulation of mitochondrial function.
    Sener A; Rasschaert J; Malaisse WJ
    Biochim Biophys Acta; 1990 Aug; 1019(1):42-50. PubMed ID: 2204425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutamine metabolism in the kidney during induction of, and recovery from, metabolic acidosis in the rat.
    Parry DM; Brosnan JT
    Biochem J; 1978 Aug; 174(2):387-96. PubMed ID: 708390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dehydrogenase regulation of metabolite oxidation and efflux from mitochondria in intact hearts.
    O'Donnell JM; Doumen C; LaNoue KF; White LT; Yu X; Alpert NM; Lewandowski ED
    Am J Physiol; 1998 Feb; 274(2):H467-76. PubMed ID: 9486249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of acidosis on canine hepatic and renal oxidative phosphorylation.
    Fry DE; Ratcliffe DJ; Yates JR
    Surgery; 1980 Aug; 88(2):269-73. PubMed ID: 7394707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on the interactions of Ca2+ and pyruvate in the regulation of rat heart pyruvate dehydrogenase activity. Effects of starvation and diabetes.
    McCormack JG; Edgell NJ; Denton RM
    Biochem J; 1982 Feb; 202(2):419-27. PubMed ID: 7092823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative metabolites of 5-S-cysteinyldopamine inhibit the alpha-ketoglutarate dehydrogenase complex: possible relevance to the pathogenesis of Parkinson's disease.
    Shen XM; Li H; Dryhurst G
    J Neural Transm (Vienna); 2000; 107(8-9):959-78. PubMed ID: 11041275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.