These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28017125)

  • 1. Review of Theoretical Models to Study Natural Products with Antiprotozoal Activity.
    Herrera-Rueda MA; Navarrete-Vázquez G; Aguirre-Crespo F; Maldonado-Velazquez MG; Vergara-Galicia J; Canul HC; Garcia-Mera X; Prado-Prado FJ
    Curr Drug Targets; 2017; 18(5):605-616. PubMed ID: 28017125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds.
    Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC
    Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II.
    Schmidt TJ; Khalid SA; Romanha AJ; Alves TM; Biavatti MW; Brun R; Da Costa FB; de Castro SL; Ferreira VF; de Lacerda MV; Lago JH; Leon LL; Lopes NP; das Neves Amorim RC; Niehues M; Ogungbe IV; Pohlit AM; Scotti MT; Setzer WN; de N C Soeiro M; Steindel M; Tempone AG
    Curr Med Chem; 2012; 19(14):2176-228. PubMed ID: 22414104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting drugs and proteins in parasite infections with topological indices of complex networks: theoretical backgrounds, applications, and legal issues.
    González-Díaz H; Romaris F; Duardo-Sanchez A; Pérez-Montoto LG; Prado-Prado F; Patlewicz G; Ubeira FM
    Curr Pharm Des; 2010; 16(24):2737-64. PubMed ID: 20642428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations.
    Ogungbe IV; Setzer WN
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27775577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting antiprotozoal activity of benzyl phenyl ether diamine derivatives through QSAR multi-target and molecular topology.
    Garcia-Domenech R; Zanni R; Galvez-Llompart M; Galvez J
    Mol Divers; 2015 May; 19(2):357-66. PubMed ID: 25754076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural product derived antiprotozoal agents: synthesis, biological evaluation, and structure-activity relationships of novel chromene and chromane derivatives.
    Harel D; Schepmann D; Prinz H; Brun R; Schmidt TJ; Wünsch B
    J Med Chem; 2013 Sep; 56(18):7442-8. PubMed ID: 23968432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salvia Species as Sources of Natural Products with Antiprotozoal Activity.
    Llurba-Montesino N; Schmidt TJ
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29337909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity.
    Dembitsky VM; Ermolenko E; Savidov N; Gloriozova TA; Poroikov VV
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33525706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limitations of Current Therapeutic Options, Possible Drug Targets and Scope of Natural Products in Control of Leishmaniasis.
    Tiwari N; Gedda MR; Tiwari VK; Singh SP; Singh RK
    Mini Rev Med Chem; 2018; 18(1):26-41. PubMed ID: 28443518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Prado-Prado FJ; García-Mera X; González-Díaz H
    Bioorg Med Chem; 2010 Mar; 18(6):2225-2231. PubMed ID: 20185316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites.
    Conti R; Chagas FO; Caraballo-Rodriguez AM; Melo WG; do Nascimento AM; Cavalcanti BC; de Moraes MO; Pessoa C; Costa-Lotufo LV; Krogh R; Andricopulo AD; Lopes NP; Pupo MT
    Chem Biodivers; 2016 Jun; 13(6):727-36. PubMed ID: 27128202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Products as a Source for Antileishmanial and Antitrypanosomal Agents.
    Scotti MT; Scotti L; Ishiki H; Ribeiro FF; Cruz RM; Oliveira MP; Mendonça FJ
    Comb Chem High Throughput Screen; 2016; 19(7):537-53. PubMed ID: 27682867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening natural products database for identification of potential antileishmanial chemotherapeutic agents.
    Venkatesan SK; Saudagar P; Shukla AK; Dubey VK
    Interdiscip Sci; 2011 Sep; 3(3):217-31. PubMed ID: 21956744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Antileishmanial Activity of Natural Dehydrodieugenol and Its Mono- and Dimethyl Ethers.
    Rodrigues LC; Barbosa-Filho JM; de Oliveira MR; do Nascimento Néris PL; Borges FV; Mioso R
    Chem Biodivers; 2016 Jul; 13(7):870-4. PubMed ID: 27251851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2D MI-DRAGON: a new predictor for protein-ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins.
    Prado-Prado F; García-Mera X; Escobar M; Sobarzo-Sánchez E; Yañez M; Riera-Fernandez P; González-Díaz H
    Eur J Med Chem; 2011 Dec; 46(12):5838-51. PubMed ID: 22005185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chemotherapeutic potential of chalcones against leishmaniases: a review.
    Tajuddeen N; Isah MB; Suleiman MA; van Heerden FR; Ibrahim MA
    Int J Antimicrob Agents; 2018 Mar; 51(3):311-318. PubMed ID: 28668673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR study and conformational analysis of 4-arylthiazolylhydrazones derived from 1-indanones with anti-Trypanosoma cruzi activity.
    Noguera GJ; Fabian LE; Lombardo E; Finkielsztein L
    Eur J Pharm Sci; 2015 Oct; 78():190-7. PubMed ID: 26209879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GRIND2-based 3D-QSAR and prediction of activity spectra for symmetrical bis-pyridinium salts with promastigote antileishmanial activity.
    Diniz EMLP; Tomich de Paula da Silva CH; Gómez-Perez V; Federico LB; Campos Rosa JM
    J Biomol Struct Dyn; 2017 Aug; 35(11):2430-2440. PubMed ID: 27495391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel fragment-based QSAR modeling and combinatorial design of pyrazole-derived CRK3 inhibitors as potent antileishmanials.
    Goyal S; Dhanjal JK; Tyagi C; Goyal M; Grover A
    Chem Biol Drug Des; 2014 Jul; 84(1):54-62. PubMed ID: 24447365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.