These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28018133)

  • 1. Multi-Objective Markov Decision Processes for Data-Driven Decision Support.
    Lizotte DJ; Laber EB
    J Mach Learn Res; 2016; 17():. PubMed ID: 28018133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolving Robust Policy Coverage Sets in Multi-Objective Markov Decision Processes Through Intrinsically Motivated Self-Play.
    Abdelfattah S; Kasmarik K; Hu J
    Front Neurorobot; 2018; 12():65. PubMed ID: 30356836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear Fitted-Q Iteration with Multiple Reward Functions.
    Lizotte DJ; Bowling M; Murphy SA
    J Mach Learn Res; 2012 Nov; 13(Nov):3253-3295. PubMed ID: 23741197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of anemia treatment in hemodialysis patients via reinforcement learning.
    Escandell-Montero P; Chermisi M; Martínez-Martínez JM; Gómez-Sanchis J; Barbieri C; Soria-Olivas E; Mari F; Vila-Francés J; Stopper A; Gatti E; Martín-Guerrero JD
    Artif Intell Med; 2014 Sep; 62(1):47-60. PubMed ID: 25091172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the complexity of computing Markov perfect equilibrium in general-sum stochastic games.
    Deng X; Li N; Mguni D; Wang J; Yang Y
    Natl Sci Rev; 2023 Jan; 10(1):nwac256. PubMed ID: 36684520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforcement Learning-Aided Channel Estimator in Time-Varying MIMO Systems.
    Kim TK; Min M
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis.
    Tsoukalas A; Albertson T; Tagkopoulos I
    JMIR Med Inform; 2015 Feb; 3(1):e11. PubMed ID: 25710907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach.
    Bennett CC; Hauser K
    Artif Intell Med; 2013 Jan; 57(1):9-19. PubMed ID: 23287490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.
    Allen D; Gillen E; Rixson L
    JBI Libr Syst Rev; 2009; 7(3):80-129. PubMed ID: 27820426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Placing Approach-Avoidance Conflict Within the Framework of Multi-objective Reinforcement Learning.
    Enkhtaivan E; Nishimura J; Cochran A
    Bull Math Biol; 2023 Oct; 85(11):116. PubMed ID: 37837562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Markov decision process approach to optimizing cancer therapy using multiple modalities.
    Maass K; Kim M
    Math Med Biol; 2020 Feb; 37(1):22-39. PubMed ID: 30863847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameterized MDPs and Reinforcement Learning Problems-A Maximum Entropy Principle-Based Framework.
    Srivastava A; Salapaka SM
    IEEE Trans Cybern; 2022 Sep; 52(9):9339-9351. PubMed ID: 34406959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multilayer affective computing model with evolutionary strategies reflecting decision-makers' preferences in process control.
    Su C; Ma X; Lv J; Tu T; Li H
    ISA Trans; 2022 Sep; 128(Pt B):565-578. PubMed ID: 34953588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An innovative approach to addressing childhood obesity: a knowledge-based infrastructure for supporting multi-stakeholder partnership decision-making in Quebec, Canada.
    Addy NA; Shaban-Nejad A; Buckeridge DL; Dubé L
    Int J Environ Res Public Health; 2015 Jan; 12(2):1314-33. PubMed ID: 25625409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement Learning and Adaptive Optimal Control for Continuous-Time Nonlinear Systems: A Value Iteration Approach.
    Bian T; Jiang ZP
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):2781-2790. PubMed ID: 33417569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating evidence and individual preferences using a web-based multi-criteria decision analytic tool: an application to prostate cancer screening.
    Cunich M; Salkeld G; Dowie J; Henderson J; Bayram C; Britt H; Howard K
    Patient; 2011; 4(3):153-62. PubMed ID: 21766911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement learning for intensive care medicine: actionable clinical insights from novel approaches to reward shaping and off-policy model evaluation.
    Roggeveen LF; Hassouni AE; de Grooth HJ; Girbes ARJ; Hoogendoorn M; Elbers PWG;
    Intensive Care Med Exp; 2024 Mar; 12(1):32. PubMed ID: 38526681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personalized next-best action recommendation with multi-party interaction learning for automated decision-making.
    Cao L; Zhu C
    PLoS One; 2022; 17(1):e0263010. PubMed ID: 35085347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Promising Approach to Optimizing Sequential Treatment Decisions for Depression: Markov Decision Process.
    Li F; Jörg F; Li X; Feenstra T
    Pharmacoeconomics; 2022 Nov; 40(11):1015-1032. PubMed ID: 36100825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.