These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28018247)

  • 1. Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases.
    Lewis P; O'Halloran KD
    Front Physiol; 2016; 7():623. PubMed ID: 28018247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Remodeling Is Pivotal in Murine Diaphragm Muscle Adaptation to Chronic Sustained Hypoxia.
    Lewis P; Sheehan D; Soares R; Coelho AV; O'Halloran KD
    Am J Respir Cell Mol Biol; 2016 Jul; 55(1):12-23. PubMed ID: 26681636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiratory muscle dysfunction in animal models of hypoxic disease: antioxidant therapy goes from strength to strength.
    O'Halloran KD; Lewis P
    Hypoxia (Auckl); 2017; 5():75-84. PubMed ID: 28770235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diaphragm Muscle Weakness Following Acute Sustained Hypoxic Stress in the Mouse Is Prevented by Pretreatment with N-Acetyl Cysteine.
    O'Leary AJ; Drummond SE; Edge D; O'Halloran KD
    Oxid Med Cell Longev; 2018; 2018():4805493. PubMed ID: 29670681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inspiratory pressure-generating capacity is preserved during ventilatory and non-ventilatory behaviours in young dystrophic mdx mice despite profound diaphragm muscle weakness.
    Burns DP; Murphy KH; Lucking EF; O'Halloran KD
    J Physiol; 2019 Feb; 597(3):831-848. PubMed ID: 30570134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diaphragm muscle weakness and increased UCP-3 gene expression following acute hypoxic stress in the mouse.
    O'Leary AJ; O'Halloran KD
    Respir Physiol Neurobiol; 2016 Jun; 226():76-80. PubMed ID: 26549555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude.
    Dawson NJ; Lyons SA; Henry DA; Scott GR
    Acta Physiol (Oxf); 2018 May; 223(1):e13030. PubMed ID: 29316265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal Muscle Fiber Type in Hypoxia: Adaptation to High-Altitude Exposure and Under Conditions of Pathological Hypoxia.
    Chaillou T
    Front Physiol; 2018; 9():1450. PubMed ID: 30369887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle.
    Lewis P; Sheehan D; Soares R; Varela Coelho A; O'Halloran KD
    Front Physiol; 2015; 6():122. PubMed ID: 25941492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD.
    Langer D; Ciavaglia C; Faisal A; Webb KA; Neder JA; Gosselink R; Dacha S; Topalovic M; Ivanova A; O'Donnell DE
    J Appl Physiol (1985); 2018 Aug; 125(2):381-392. PubMed ID: 29543134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat.
    McDonald FB; Dempsey EM; O'Halloran KD
    Front Physiol; 2016; 7():276. PubMed ID: 27462274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species mediated diaphragm fatigue in a rat model of chronic intermittent hypoxia.
    Shortt CM; Fredsted A; Chow HB; Williams R; Skelly JR; Edge D; Bradford A; O'Halloran KD
    Exp Physiol; 2014 Apr; 99(4):688-700. PubMed ID: 24443349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorimotor control of breathing in the mdx mouse model of Duchenne muscular dystrophy.
    Burns DP; Roy A; Lucking EF; McDonald FB; Gray S; Wilson RJ; Edge D; O'Halloran KD
    J Physiol; 2017 Nov; 595(21):6653-6672. PubMed ID: 28952155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of resistive breathing on exercise capacity and diaphragm function in patients with ischaemic heart disease.
    Darnley GM; Gray AC; McClure SJ; Neary P; Petrie M; McMurray JJ; MacFarlane NG
    Eur J Heart Fail; 1999 Aug; 1(3):297-300. PubMed ID: 10935679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy-associated atrophy and metabolic remodeling of the mouse diaphragm after short-term intermittent hypoxia.
    Giordano C; Lemaire C; Li T; Kimoff RJ; Petrof BJ
    PLoS One; 2015; 10(6):e0131068. PubMed ID: 26107816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological implications of altitude training for endurance performance at sea level: a review.
    Bailey DM; Davies B
    Br J Sports Med; 1997 Sep; 31(3):183-90. PubMed ID: 9298550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory muscle dysfunction in COPD: from muscles to cell.
    Klimathianaki M; Vaporidi K; Georgopoulos D
    Curr Drug Targets; 2011 Apr; 12(4):478-88. PubMed ID: 21194407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory muscle function and activation in chronic obstructive pulmonary disease.
    McKenzie DK; Butler JE; Gandevia SC
    J Appl Physiol (1985); 2009 Aug; 107(2):621-9. PubMed ID: 19390004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sustained hypoxia on sternohyoid and diaphragm muscle during development.
    Carberry JC; McMorrow C; Bradford A; Jones JF; O'Halloran KD
    Eur Respir J; 2014 Apr; 43(4):1149-58. PubMed ID: 23766332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Costal and crural diaphragm function during sustained hypoxia in awake canines.
    Ikegami T; Ji M; Fujimura N; Suneby Jagers JV; Kieser TM; Easton PA
    J Appl Physiol (1985); 2019 Apr; 126(4):1117-1128. PubMed ID: 30730807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.