BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28018297)

  • 1. Mechanisms of Antibacterial Action of Quinoxaline 1,4-di-
    Xu F; Cheng G; Hao H; Wang Y; Wang X; Chen D; Peng D; Liu Z; Yuan Z; Dai M
    Front Microbiol; 2016; 7():1948. PubMed ID: 28018297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo.
    Wang X; Martínez MA; Cheng G; Liu Z; Huang L; Dai M; Chen D; Martínez-Larrañaga MR; Anadón A; Yuan Z
    Drug Metab Rev; 2016 May; 48(2):159-82. PubMed ID: 27285897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROS mediated cytotoxicity of porcine adrenocortical cells induced by QdNOs derivatives in vitro.
    Huang XJ; Zhang HH; Wang X; Huang LL; Zhang LY; Yan CX; Liu Y; Yuan ZH
    Chem Biol Interact; 2010 May; 185(3):227-34. PubMed ID: 20188712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic and Molecular Basis of the Antibacterial Action of Quinoxaline 1,4-Di-N-Oxides against Escherichia coli.
    Cheng G; Li B; Wang C; Zhang H; Liang G; Weng Z; Hao H; Wang X; Liu Z; Dai M; Wang Y; Yuan Z
    PLoS One; 2015; 10(8):e0136450. PubMed ID: 26296207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites.
    Liu Q; Zhang J; Luo X; Ihsan A; Liu X; Dai M; Cheng G; Hao H; Wang X; Yuan Z
    Food Chem Toxicol; 2016 Jul; 93():145-57. PubMed ID: 27170491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial activity of Bacillus species-derived surfactin on Brachyspira hyodysenteriae and Clostridium perfringens.
    Horng YB; Yu YH; Dybus A; Hsiao FS; Cheng YH
    AMB Express; 2019 Nov; 9(1):188. PubMed ID: 31754906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxidation rates play a critical role in DNA damage mediated by important synthetic drugs, quinoxaline 1,4-dioxides.
    Wang X; Zhang H; Huang L; Pan Y; Li J; Chen D; Cheng G; Hao H; Tao Y; Liu Z; Yuan Z
    Chem Res Toxicol; 2015 Mar; 28(3):470-81. PubMed ID: 25626015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions.
    Cheng G; Sa W; Cao C; Guo L; Hao H; Liu Z; Wang X; Yuan Z
    Front Pharmacol; 2016; 7():64. PubMed ID: 27047380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Metabolism and Metabolic Toxicology of Quinoxaline 1,4-Di-N-oxides.
    An H; Li Y; Li Y; Gong S; Zhu Y; Li X; Zhou S; Wu Y
    Chem Res Toxicol; 2024 Apr; 37(4):528-539. PubMed ID: 38507288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolism of carbadox, olaquindox, mequindox, quinocetone and cyadox: an overview.
    Liu ZY; Sun ZL
    Med Chem; 2013 Dec; 9(8):1017-27. PubMed ID: 23521002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An appraisal on synthetic and pharmaceutical perspectives of quinoxaline 1,4-di-N-oxide scaffold.
    Agrawal N; Bhardwaj A
    Chem Biol Drug Des; 2022 Sep; 100(3):346-363. PubMed ID: 35610776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotoxicity of quinocetone, cyadox and olaquindox in vitro and in vivo.
    Ihsan A; Wang X; Zhang W; Tu H; Wang Y; Huang L; Iqbal Z; Cheng G; Pan Y; Liu Z; Tan Z; Zhang Y; Yuan Z
    Food Chem Toxicol; 2013 Sep; 59():207-14. PubMed ID: 23774262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi.
    Zhao Y; Cheng G; Hao H; Pan Y; Liu Z; Dai M; Yuan Z
    BMC Vet Res; 2016 Sep; 12(1):186. PubMed ID: 27600955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinoxaline 1,4-dioxides as anticancer and hypoxia-selective drugs.
    Gali-Muhtasib HU; Haddadin MJ; Rahhal DN; Younes IH
    Oncol Rep; 2001; 8(3):679-84. PubMed ID: 11295102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological activity of esters of quinoxaline-7-carboxylate 1,4-di-N-oxide against E. histolytica and their analysis as potential thioredoxin reductase inhibitors.
    Soto-Sánchez J; Caro-Gómez LA; Paz-González AD; Marchat LA; Rivera G; Moo-Puc R; Arias DG; Ramírez-Moreno E
    Parasitol Res; 2020 Feb; 119(2):695-711. PubMed ID: 31907668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of marker residues of quinoxaline-1,4-di-N-oxides and its prototype identification by liquid chromatography tandem mass spectrometry.
    Li L; Liu R; Liu L; Guo Z; Zhou T; Yang Y; Yang H; He L
    Food Chem; 2024 Jun; 442():138395. PubMed ID: 38266409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitomycin C induction of bacteriophages from Serpulina hyodysenteriae and Serpulina innocens.
    Humphrey SB; Stanton TB; Jensen NS
    FEMS Microbiol Lett; 1995 Dec; 134(1):97-101. PubMed ID: 8593962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High risk of adrenal toxicity of N1-desoxy quinoxaline 1,4-dioxide derivatives and the protection of oligomeric proanthocyanidins (OPC) in the inhibition of the expression of aldosterone synthetase in H295R cells.
    Wang X; Yang C; Ihsan A; Luo X; Guo P; Cheng G; Dai M; Chen D; Liu Z; Yuan Z
    Toxicology; 2016 Feb; 341-343():1-16. PubMed ID: 26802905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of genes associated with prophage-like gene transfer agents in the pathogenic intestinal spirochaetes Brachyspira hyodysenteriae, Brachyspira pilosicoli and Brachyspira intermedia.
    Motro Y; La T; Bellgard MI; Dunn DS; Phillips ND; Hampson DJ
    Vet Microbiol; 2009 Mar; 134(3-4):340-5. PubMed ID: 18950961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of genes of VSH-1, a prophage-like gene transfer agent of Brachyspira hyodysenteriae.
    Matson EG; Thompson MG; Humphrey SB; Zuerner RL; Stanton TB
    J Bacteriol; 2005 Sep; 187(17):5885-92. PubMed ID: 16109929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.