BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28018333)

  • 21. Exploring Potential Mechanisms of Fludioxonil Resistance in
    Wang YF; Hao FM; Zhou HH; Chen JB; Su HC; Yang F; Cai YY; Li GL; Zhang M; Zhou F
    J Fungi (Basel); 2022 Aug; 8(8):. PubMed ID: 36012827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the Biological and Molecular Characteristics of Resistance to Fludioxonil in
    Zhou F; Hu HY; Li DX; Tan LG; Zhang Q; Gao HT; Sun HL; Tian XL; Shi MW; Zhang FL; Li CW
    Plant Dis; 2021 Jul; 105(7):1936-1941. PubMed ID: 33044139
    [No Abstract]   [Full Text] [Related]  

  • 23. Detection and fitness comparison of target-based highly fludioxonil-resistant isolates of Botrytis cinerea from strawberry and cucumber in China.
    Sang C; Ren W; Wang J; Xu H; Zhang Z; Zhou M; Chen C; Wang K
    Pestic Biochem Physiol; 2018 May; 147():110-118. PubMed ID: 29933980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sixth HAMP domain negatively regulates the activity of the group III HHK containing seven HAMP domains.
    Randhawa A; Mondal AK
    Biochem Biophys Res Commun; 2013 Aug; 438(1):140-4. PubMed ID: 23876316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species.
    Oiki S; Yaguchi T; Urayama SI; Hagiwara D
    PLoS One; 2022; 17(1):e0262521. PubMed ID: 35100282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus.
    Hagiwara D; Takahashi-Nakaguchi A; Toyotome T; Yoshimi A; Abe K; Kamei K; Gonoi T; Kawamoto S
    PLoS One; 2013; 8(12):e80881. PubMed ID: 24312504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance.
    Avenot H; Simoneau P; Iacomi-Vasilescu B; Bataillé-Simoneau N
    Curr Genet; 2005 Apr; 47(4):234-43. PubMed ID: 15765227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resistance of Black Aspergilli Species from Grape Vineyards to SDHI, QoI, DMI, and Phenylpyrrole Fungicides.
    Testempasis SI; Karaoglanidis GS
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea.
    Leroux P; Fritz R; Debieu D; Albertini C; Lanen C; Bach J; Gredt M; Chapeland F
    Pest Manag Sci; 2002 Sep; 58(9):876-88. PubMed ID: 12233177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fitness and Competitive Ability of Botrytis cinerea Isolates with Resistance to Multiple Chemical Classes of Fungicides.
    Chen SN; Luo CX; Hu MJ; Schnabel G
    Phytopathology; 2016 Sep; 106(9):997-1005. PubMed ID: 27161219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance.
    Liu W; Leroux P; Fillinger S
    Fungal Genet Biol; 2008 Jul; 45(7):1062-74. PubMed ID: 18495505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fungicide activity through activation of a fungal signalling pathway.
    Kojima K; Takano Y; Yoshimi A; Tanaka C; Kikuchi T; Okuno T
    Mol Microbiol; 2004 Sep; 53(6):1785-96. PubMed ID: 15341655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1.
    Lawry SM; Tebbets B; Kean I; Stewart D; Hetelle J; Klein BS
    Antimicrob Agents Chemother; 2017 Feb; 61(2):. PubMed ID: 27872062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum.
    Kanetis L; Förster H; Jones CA; Borkovich KA; Adaskaveg JE
    Phytopathology; 2008 Feb; 98(2):205-14. PubMed ID: 18943197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Baseline Sensitivity and Potential Resistance Mechanisms for
    Zhou F; Cui YX; Wang BL; Zhou YD; Li SW; Zhang YT; Zhang K; Chen ZY; Hu HY; Li CW
    Plant Dis; 2022 Aug; 106(8):2138-2144. PubMed ID: 35100030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi.
    Meena N; Kaur H; Mondal AK
    J Biol Chem; 2010 Apr; 285(16):12121-32. PubMed ID: 20164185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological and molecular characterizations of field fludioxonil-resistant isolates of Fusarium graminearum.
    Wen Z; Wang J; Jiao C; Shao W; Ma Z
    Pestic Biochem Physiol; 2022 Jun; 184():105101. PubMed ID: 35715040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of High Fludioxonil Resistance in
    Dowling M; Gelain J; May De Mio LL; Schnabel G
    Phytopathology; 2021 Mar; 111(3):478-484. PubMed ID: 33044131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of the CORVET complex alleviates the fungicidal effects of fludioxonil on the yeast
    Randhawa A; Kundu D; Sharma A; Prasad R; Mondal AK
    J Biol Chem; 2019 Jan; 294(2):461-475. PubMed ID: 30446623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in
    Wang W; Fang Y; Imran M; Hu Z; Zhang S; Huang Z; Liu X
    Microorganisms; 2021 Jan; 9(2):. PubMed ID: 33525426
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.