These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 28018347)

  • 1. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life.
    Saxena A; Wu D
    Front Immunol; 2016; 7():580. PubMed ID: 28018347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-length recombinant antibodies from
    Rashid MH
    MAbs; 2022; 14(1):2111748. PubMed ID: 36018829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations.
    Vafa O; Gilliland GL; Brezski RJ; Strake B; Wilkinson T; Lacy ER; Scallon B; Teplyakov A; Malia TJ; Strohl WR
    Methods; 2014 Jan; 65(1):114-26. PubMed ID: 23872058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.
    Kinder M; Greenplate AR; Strohl WR; Jordan RE; Brezski RJ
    MAbs; 2015; 7(3):494-504. PubMed ID: 25933349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding.
    Borrok MJ; Luheshi NM; Beyaz N; Davies GC; Legg JW; Wu H; Dall'Acqua WF; Tsui P
    MAbs; 2015; 7(4):743-51. PubMed ID: 25970007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fc Engineering for Developing Therapeutic Bispecific Antibodies and Novel Scaffolds.
    Liu H; Saxena A; Sidhu SS; Wu D
    Front Immunol; 2017; 8():38. PubMed ID: 28184223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel in vitro assay to predict neonatal Fc receptor-mediated human IgG half-life.
    Souders CA; Nelson SC; Wang Y; Crowley AR; Klempner MS; Thomas W
    MAbs; 2015; 7(5):912-21. PubMed ID: 26018774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions.
    Grevys A; Bern M; Foss S; Bratlie DB; Moen A; Gunnarsen KS; Aase A; Michaelsen TE; Sandlie I; Andersen JT
    J Immunol; 2015 Jun; 194(11):5497-508. PubMed ID: 25904551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current strategies in antibody engineering: Fc engineering and pH-dependent antigen binding, bispecific antibodies and antibody drug conjugates.
    Vincent KJ; Zurini M
    Biotechnol J; 2012 Dec; 7(12):1444-50. PubMed ID: 23125076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallizable Fragment Glycoengineering for Therapeutic Antibodies Development.
    Li W; Zhu Z; Chen W; Feng Y; Dimitrov DS
    Front Immunol; 2017; 8():1554. PubMed ID: 29181010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myeloid cells as effector cells for monoclonal antibody therapy of cancer.
    Braster R; O'Toole T; van Egmond M
    Methods; 2014 Jan; 65(1):28-37. PubMed ID: 23811299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Fc-mediated effector functions of monoclonal antibodies: The example of HexaBodies.
    van der Horst HJ; Mutis T
    Immunol Rev; 2024 Nov; 328(1):456-465. PubMed ID: 39275983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting half-life and effector functions of therapeutic antibodies by Fc-engineering: An interaction-function review.
    Fonseca MHG; Furtado GP; Bezerra MRL; Pontes LQ; Fernandes CFC
    Int J Biol Macromol; 2018 Nov; 119():306-311. PubMed ID: 30041038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.
    Kellner C; Otte A; Cappuzzello E; Klausz K; Peipp M
    Transfus Med Hemother; 2017 Sep; 44(5):327-336. PubMed ID: 29070978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are endosomal trafficking parameters better targets for improving mAb pharmacokinetics than FcRn binding affinity?
    Gurbaxani B; Dostalek M; Gardner I
    Mol Immunol; 2013 Dec; 56(4):660-74. PubMed ID: 23917469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR.
    Suzuki T; Ishii-Watabe A; Tada M; Kobayashi T; Kanayasu-Toyoda T; Kawanishi T; Yamaguchi T
    J Immunol; 2010 Feb; 184(4):1968-76. PubMed ID: 20083659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions.
    Kellner C; Derer S; Valerius T; Peipp M
    Methods; 2014 Jan; 65(1):105-13. PubMed ID: 23851282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer.
    Bakema JE; van Egmond M
    Curr Top Microbiol Immunol; 2014; 382():373-92. PubMed ID: 25116109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro.
    Hodoniczky J; Zheng YZ; James DC
    Biotechnol Prog; 2005; 21(6):1644-52. PubMed ID: 16321047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles of
    Boune S; Hu P; Epstein AL; Khawli LA
    Antibodies (Basel); 2020 Jun; 9(2):. PubMed ID: 32532067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.