These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 28018482)

  • 1. Algae-based biofilm productivity utilizing dairy wastewater: effects of temperature and organic carbon concentration.
    Fica ZT; Sims RC
    J Biol Eng; 2016; 10():18. PubMed ID: 28018482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products.
    Christenson LB; Sims RC
    Biotechnol Bioeng; 2012 Jul; 109(7):1674-84. PubMed ID: 22328283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor.
    Iman Shayan S; Agblevor FA; Bertin L; Sims RC
    Bioresour Technol; 2016 Jul; 211():527-33. PubMed ID: 27038261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater.
    Cho DH; Ramanan R; Heo J; Kang Z; Kim BH; Ahn CY; Oh HM; Kim HS
    Bioresour Technol; 2015 Sep; 191():481-7. PubMed ID: 25746593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dairy wastewater treatment using Monoraphidium sp. KMC4 and its potential as hydrothermal liquefaction feedstock.
    Singh P; Venkata Mohan S; Mohanty K
    Bioresour Technol; 2023 May; 376():128877. PubMed ID: 36921641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Struvite formation associated with the microalgae biofilm matrix of a rotating algal biofilm reactor (RABR) during nutrient removal from municipal wastewater.
    Hillman KM; Sims RC
    Water Sci Technol; 2020 Feb; 81(4):644-655. PubMed ID: 32460269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifunctional lighting/supporting substrate for microalgal photosynthetic biofilm to bio-remove ammonia nitrogen from high turbidity wastewater.
    Zeng W; Ma S; Huang Y; Xia A; Zhu X; Zhu X; Liao Q
    Water Res; 2022 Sep; 223():119041. PubMed ID: 36081254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing.
    Boelee NC; Janssen M; Temmink H; Shrestha R; Buisman CJ; Wijffels RH
    Appl Biochem Biotechnol; 2014 Jan; 172(1):405-22. PubMed ID: 24081706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications.
    Chinnasamy S; Bhatnagar A; Hunt RW; Das KC
    Bioresour Technol; 2010 May; 101(9):3097-105. PubMed ID: 20053551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity.
    Kim BH; Kim DH; Choi JW; Kang Z; Cho DH; Kim JY; Oh HM; Kim HS
    J Microbiol Biotechnol; 2015 Sep; 25(9):1547-54. PubMed ID: 25951844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels.
    Patel AK; Joun J; Sim SJ
    Bioresour Technol; 2020 Oct; 313():123681. PubMed ID: 32562971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wastewater use in algae production for generation of renewable resources: a review and preliminary results.
    Dalrymple OK; Halfhide T; Udom I; Gilles B; Wolan J; Zhang Q; Ergas S
    Aquat Biosyst; 2013 Jan; 9(1):2. PubMed ID: 23289706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of dairy manure nutrients by benthic freshwater algae.
    Wilkie AC; Mulbry WW
    Bioresour Technol; 2002 Aug; 84(1):81-91. PubMed ID: 12137274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm Attached Cultivation of
    Cheng P; Wang Y; Liu T; Liu D
    Front Plant Sci; 2017; 8():1594. PubMed ID: 28983302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor.
    Peng J; Kumar K; Gross M; Kunetz T; Wen Z
    Water Environ Res; 2020 May; 92(5):766-778. PubMed ID: 31715042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers.
    Mulbry W; Kondrad S; Pizarro C; Kebede-Westhead E
    Bioresour Technol; 2008 Nov; 99(17):8137-42. PubMed ID: 18487042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment.
    Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M
    Crit Rev Biotechnol; 2018 Dec; 38(8):1244-1260. PubMed ID: 29768936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of a wide spectrum biopesticide from Monoraphidium sp. KMC4 grown in simulated dairy wastewater.
    Mohanty SS; Mohanty K
    Bioresour Technol; 2023 Apr; 374():128815. PubMed ID: 36868427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.