These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28018711)

  • 1. Cerebral capillary velocimetry based on temporal OCT speckle contrast.
    Choi WJ; Li Y; Qin W; Wang RK
    Biomed Opt Express; 2016 Dec; 7(12):4859-4873. PubMed ID: 28018711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forward multiple scattering dominates speckle decorrelation in whole-blood flowmetry using optical coherence tomography.
    Ferris NG; Cannon TM; Villiger M; Bouma BE; Uribe-Patarroyo N
    Biomed Opt Express; 2020 Apr; 11(4):1947-1966. PubMed ID: 32341859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OCT methods for capillary velocimetry.
    Srinivasan VJ; Radhakrishnan H; Lo EH; Mandeville ET; Jiang JY; Barry S; Cable AE
    Biomed Opt Express; 2012 Mar; 3(3):612-29. PubMed ID: 22435106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography.
    Jansen SM; de Bruin DM; Faber DJ; Dobbe IJGG; Heeg E; Milstein DMJ; Strackee SD; van Leeuwen TG
    J Biomed Opt; 2017 Aug; 22(8):1-9. PubMed ID: 28822141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography angiography-based capillary velocimetry.
    Wang RK; Zhang Q; Li Y; Song S
    J Biomed Opt; 2017 Jun; 22(6):66008. PubMed ID: 28617921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity measurements of heterogeneous RBC flow in capillary vessels using dynamic laser speckle signal.
    Li C; Wang R
    J Biomed Opt; 2017 Apr; 22(4):46002. PubMed ID: 28384709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoacoustic flow velocity imaging based on complex field decorrelation.
    Pakdaman Zangabad R; Iskander-Rizk S; van der Meulen P; Meijlink B; Kooiman K; Wang T; van der Steen AFW; van Soest G
    Photoacoustics; 2021 Jun; 22():100256. PubMed ID: 33868919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autocorrelation analysis-based OCT velocimetry for axial blood flow velocity imaging of the cerebral capillary network.
    Guo X; Ren G; Tang J
    Opt Lett; 2023 Jul; 48(13):3599-3602. PubMed ID: 37390190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative technique for robust and noise-tolerant speed measurements based on speckle decorrelation in optical coherence tomography.
    Uribe-Patarroyo N; Villiger M; Bouma BE
    Opt Express; 2014 Oct; 22(20):24411-29. PubMed ID: 25322018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.
    Tang J; Erdener SE; Fu B; Boas DA
    Opt Lett; 2017 Oct; 42(19):3976-3979. PubMed ID: 28957175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical microvascular blood flow velocity mapping by combining dynamic light scattering optical coherence tomography and two-photon microscopy.
    Pian Q; Alfadhel M; Tang J; Lee GV; Li B; Fu B; Ayata Y; Yaseen MA; Boas DA; Secomb TW; Sakadzic S
    J Biomed Opt; 2023 Jul; 28(7):076003. PubMed ID: 37484973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved speckle contrast optical coherence tomography angiography.
    Wang L; Li Y; Li Y; Li K
    Am J Transl Res; 2018; 10(10):3025-3035. PubMed ID: 30416648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal.
    Wang Y; Wang Y; Akansu A; Belfield KD; Hubbi B; Liu X
    Biomed Opt Express; 2015 Nov; 6(11):4302-16. PubMed ID: 26600996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust quantitative single-exposure laser speckle imaging with true flow speckle contrast in the temporal and spatial domains.
    Wang C; Cao Z; Jin X; Lin W; Zheng Y; Zeng B; Xu M
    Biomed Opt Express; 2019 Aug; 10(8):4097-4114. PubMed ID: 31452997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical flow optical coherence tomography for determining accurate velocity fields.
    Wei S; Kang JU
    Opt Express; 2020 Aug; 28(17):25502-25527. PubMed ID: 32907070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-time series optical coherence tomography angiography and its application to cutaneous microvasculature.
    Wang Q; Gong P; Cense B; Sampson DD
    Biomed Opt Express; 2019 Jan; 10(1):293-307. PubMed ID: 30775101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision analysis and optimization in phase decorrelation OCT velocimetry.
    Gräfe MGO; Gondre M; de Boer JF
    Biomed Opt Express; 2019 Mar; 10(3):1297-1314. PubMed ID: 30891347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography.
    Huang BK; Gamm UA; Bhandari V; Khokha MK; Choma MA
    Biomed Opt Express; 2015 Sep; 6(9):3515-38. PubMed ID: 26417520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry.
    Yeom E; Nam KH; Paeng DG; Lee SJ
    Ultrasonics; 2014 Aug; 54(6):1480-7. PubMed ID: 24794508
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.