These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28018711)

  • 21. Ergodic speckle contrast optical coherence tomography velocimetry of rapid blood flow.
    Hong J; Zhu W; He K; Chen X; Lu J; Li P
    Opt Lett; 2024 Jul; 49(13):3600-3603. PubMed ID: 38950219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow measurement without phase information in optical coherence tomography images.
    Barton J; Stromski S
    Opt Express; 2005 Jul; 13(14):5234-9. PubMed ID: 19498514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy.
    Nadort A; Woolthuis RG; van Leeuwen TG; Faber DJ
    Biomed Opt Express; 2013; 4(11):2347-61. PubMed ID: 24298399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional Ultrasound Speckle Decorrelation-Based Velocimetry of the Brain.
    Tang J; Postnov DD; Kilic K; Erdener SE; Lee B; Giblin JT; Szabo TL; Boas DA
    Adv Sci (Weinh); 2020 Sep; 7(18):2001044. PubMed ID: 32999839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation.
    Chan G; Balaratnasingam C; Xu J; Mammo Z; Han S; Mackenzie P; Merkur A; Kirker A; Albiani D; Sarunic MV; Yu DY
    Microvasc Res; 2015 Jul; 100():32-9. PubMed ID: 25917012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells.
    Erdener ŞE; Tang J; Sajjadi A; Kılıç K; Kura S; Schaffer CB; Boas DA
    J Cereb Blood Flow Metab; 2019 May; 39(5):886-900. PubMed ID: 29168661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry.
    Li Y; Wei W; Wang RK
    Sci Rep; 2018 Mar; 8(1):4107. PubMed ID: 29515156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels.
    Choi WJ; Qin W; Chen CL; Wang J; Zhang Q; Yang X; Gao BZ; Wang RK
    Biomed Opt Express; 2016 Jul; 7(7):2709-28. PubMed ID: 27446700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA).
    Briers JD; Richards G; He XW
    J Biomed Opt; 1999 Jan; 4(1):164-75. PubMed ID: 23015182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping transverse velocity of particles in capillary vessels by time-varying laser speckle through perturbation analyses.
    Wang Y; Ma Z; Wang R
    Opt Lett; 2015 May; 40(9):1896-9. PubMed ID: 25927742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved velocimetry in optical coherence tomography using Bayesian analysis.
    Zhou KC; Huang BK; Tagare H; Choma MA
    Biomed Opt Express; 2015 Dec; 6(12):4796-811. PubMed ID: 26713195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography.
    Shin P; Choi W; Joo J; Oh WY
    J Cereb Blood Flow Metab; 2019 Oct; 39(10):1983-1994. PubMed ID: 29757059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation.
    Wei W; Li Y; Xie Z; Deegan AJ; Wang RK
    IEEE Trans Med Imaging; 2019 May; 38(5):1295-1303. PubMed ID: 30489265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography.
    Werkmeister RM; Dragostinoff N; Palkovits S; Told R; Boltz A; Leitgeb RA; Gröschl M; Garhöfer G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6062-71. PubMed ID: 22893675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography).
    Maloca P; Gyger C; Hasler PW
    Graefes Arch Clin Exp Ophthalmol; 2016 Jun; 254(6):1201-10. PubMed ID: 26847040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Speckle-dependent accuracy in phase-sensitive optical coherence tomography.
    Hepburn MS; Foo KY; Wijesinghe P; Munro PRT; Chin L; Kennedy BF
    Opt Express; 2021 May; 29(11):16950-16968. PubMed ID: 34154247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microvascular contrast enhancement in optical coherence tomography using microbubbles.
    Assadi H; Demidov V; Karshafian R; Douplik A; Vitkin IA
    J Biomed Opt; 2016 Jul; 21(7):76014. PubMed ID: 27533242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative transverse flow measurement using optical coherence tomography speckle decorrelation analysis.
    Liu X; Huang Y; Ramella-Roman JC; Mathews SA; Kang JU
    Opt Lett; 2013 Mar; 38(5):805-7. PubMed ID: 23455305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluctuations of temporal contrast in laser speckle imaging of blood flow.
    Hong J; Wang Y; Chen X; Lu J; Li P
    Opt Lett; 2018 Nov; 43(21):5214-5217. PubMed ID: 30382969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.